
ISSN: 1844-7562 COMMUNICATIO

 7

Communication

A Proposed Approach for Web Server Placement

Implementation in ARM

Nima Aberomand1, Ali Eivazy2, Razieh Takbiri3

Abstract: This article developed and implemented an embedded Web server on the S3C44B0X based

board by using μClinux operating system as development platform. Two schemes are put forward in

this paper: One is an embedded Web server based on boa, the other is an embedded Web server based

on HTTP and socket programming. In the first scheme, the main work is to transplant boa in μClinux

and to design CGI. The results is realization of dynamic pages and simple control functions. In the

second scheme, it is possible to fulfill the GET and POST requests in HTTP and to produce simple

dynamic pages.It is also possible to realize the query of history data and some control functions in the

request of browser. In this paper, the architecture of embedded Web server and the S3C44B0X

development platform is first discussed, the principle and realization of boot loader is also introduced.

After that the characteristic of μClinux and network driver is described, including the transplant of

μClinux. Then, the principle and mechanism of TCP/IP and HTTP is first discussed and the principle

of CGI is also introduced. After that the transplant of boa and the design of CGI and the test of Web

server is discussed.

Keywords: Embedded Web Server; μClinux; HTTP; Boa; Socket

1 Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran,
Address: No. 223, Headquarter of Islamic Azad University, South Tehran Branch, ZIP area 11,
Azarshahr Street, North Iranshahr Street, Karimkhan-e-Zand Avenue, Tehran, Iran, Correspondng
author: nima.aberomand@gmail.com.
2 Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran,

Address: No. 223, Headquarter of Islamic Azad University, South Tehran Branch, ZIP area 11,
Azarshahr Street, North Iranshahr Street, Karimkhan-e-Zand Avenue, Tehran, Iran, E-mail:
Ali.eivazy@gmail.com.
3 Department of Electronic Technology Engineering, South Tehran Branch, Islamic Azad University,
Tehran, Iran, Address: No. 223, Headquarter of Islamic Azad University, South Tehran Branch, ZIP
area 11, Azarshahr Street, North Iranshahr Street, Karimkhan-e-Zand Avenue, Tehran, Iran, E-mail:
raziyeh.takbiri@gmail.com.

AUDC, Vol. 15, No. 1/2021, pp. 7-18

ACTA UNIVERSITATIS DANUBIUS Vol. 15, No. 1/2021

8

1. Introduction

The purpose of the project is to build an embedded Web server that implements

specific functions. It can monitor remote devices. Users can remotely access the Web

server through the network to collect data and query historical data. It can also be

remotely accessed through various interfaces. The device is controlled. In addition,

new control functions can be added as needed without major changes to the web

server’s framework.

The embedded Web server implemented in this paper is general and can be used in

industrial control or smart home systems after improvement, so it has certain

practical significance. The system can be used for the collection of physical

quantities such as remote temperature and humidity, as well as for the transmission

of remote images. Remote control of the device is also possible through the various

interfaces of the embedded system.

Due to the popularity of the Internet, various control information can be transmitted

quickly and reliably by means of the Internet. Embedded systems have advantages

in terms of cost, size, and power consumption. Therefore, combining embedded

systems with the Internet is the trend and trend of its development. The fastest

growing and most widely used Internet is the WWW service. Web servers and Web

browsers provide convenient and stable services. By adding a TCP/IP protocol stack

to an embedded device and building a Web server, users can remotely monitor and

manage the device through a Web browser. Users can access the embedded web

server from any location using standard web browsers (such as IE and Netscape

browsers) without having to write any client programs. The embedded Web server

can provide rich and colorful information, such as data, text, images, forms, voices,

etc. The data can also be updated in real time, and the results of device control can

also be immediately fed back.

In industrial applications, it makes sense to use embedded Web servers in areas such

as smart devices, instruments and sensors. These devices have an embedded Web

server built in, and a dynamic HTML page can be displayed in the user browser, and

the system configuration and device parameters can be adjusted in the page. Because

of this, the traditional C/S structure control mode is gradually shifting to the B/S

structure, which can reduce costs and eliminate the need to develop the client GUI.

In summary, the development of embedded Web server has important practical

significance and application value. The work done in this paper is mainly reflected

in the following aspects:

ISSN: 1844-7562 COMMUNICATIO

 9

(1) Construction of embedded Web server software and hardware platform. The

hardware platform uses the S3C44B0X development board, and the bootloader is developed

as a system boot program on the hardware platform. The software platform uses the μClinux

operating system to implement the migration of the μClinux operating system on the

development board.

(2) Ported a generic embedded Web server boa, the specific work is to compile and

configure boa, as well as the preparation of CGI programs.

(3) Based on the detailed analysis of TCP/IP and HTTP protocols, a specific embedded

Web server is designed. The work done is: the preparation of the server main program, the

analysis of user requests, the implementation of static and dynamic pages, and the

implementation of various control functions according to the user’s request.

2. Methodology

Choosing a suitable hardware platform is especially important for embedded

systems. This article builds a hardware platform suitable for Web server

development with the widely used S3C44B0X processor as the core.

S3C44B0X Microprocessor Overview

At present, ARM chips have occupied about 80% of the market of 32-bit

microprocessors. ARM is focused on design, not on chips. The ARM core is known

for its combination of high performance, small size, low power consumption,

compact code density and multiple supply sources. ARM has become the RISC

standard for embedded solutions such as mobile communications, handheld

computing, and multimedia digital consumer (Shisheng & Changqing, 2011, pp.

2670-2674). This section introduces Samsung’s S3C44B0X chip based on the

ARM7TDMI core.

Samsung’s S3C44B0X32-bit RISC processor provides a cost-effective and high-

performance microcontroller solution for handheld devices and general applications.

S3C44B0X integrates ARM7TDMI core on-chip, adopts 0.25um CMOS process,

and integrates abundant peripheral function modules based on the basic functions of

ARM7TDMI core, which is convenient for low-cost design of embedded application

system (Toulson & Wilmshurst, 2017, pp. 3-18).

The S3C44B0X provides the following components: 8KB Cache, optional internal

SRAM, LCD controller, 2 UARTs, 4 DMAs, system management (chip select logic,

FP/EDO/SDRAM controller), 6 timers with PWM, I/O port, RTC, 8-channel 10-bit

ACTA UNIVERSITATIS DANUBIUS Vol. 15, No. 1/2021

10

ADC, I2C/I2S bus interface, synchronous SIO interface, clock PLL (Jiyou, Deng,

Zhang & Zhou, 2011, pp. 818-824). The characteristics of S3C44B0X can be

summarized as follows (Bakos, 2016, pp. 1-47):

 Using ARM7TDMI core, I / O voltage 3.3V, core voltage 2.5V.

 Built-in phase-locked loop (PLL) with a system frequency up to 66MHz.

 4 working modes for power management to reduce system power consumption.

 8KB System Cache (CACHE), which greatly improves the system speed.

 Support 8 MEMORY BANK, maximum external storage space up to 256MB, and support

SDRAM.

 Built-in color LCD controller.

 2-way asynchronous serial port (UART).

 71 general purpose I/O ports.

 8-channel analog-to-digital converter (ADC).

 Real Time Clock (RTC) and Watchdog Circuit (WATCHDOG).

S3C44B0X μClinux operating systemOverview

μClinux is an embedded Linux operating system for industrial control. It is derived

from the Linux 2.0/2.4 kernel and follows most of the features of mainstream Linux.

It is suitable for microprocessors/microcontrollers without MMU. Supporting CPUs

without MMU is a fundamental difference between μClinux and mainstream Linux

(Wookey & Tak-Shing, 2002, pp. 52-59).

As an embedded operating system, μClinux has the following characteristics1:

 Universal Linux API. Those who are familiar with standard Linux will learn to use

μClinux very quickly.

 The μClinux kernel is small, generally less than 512KB.

 μClinux kernel + tool software is generally less than 1M.

 μClinux has a complete TCP/IP stack.

 μClinux also supports a number of other network protocols.

1 http://www.μCdot.org/article.pl?sid=03/07/30/0114226&mode=thread.

ISSN: 1844-7562 COMMUNICATIO

 11

 μClinux supports multiple file systems, including common NFS (network file

system), ext2 MS-DOS and FAT16/32, etc.

Compared with standard Linux, since μClinux does not support MMU, multitasking

is more troublesome, but most user programs running on μClinux do not need

multitasking. In addition, the binary code and source code for the μClinux kernel

have been rewritten to tighten and reduce the underlying code. This makes the

μClinux kernel very small compared to the standard Linux 2.4 kernel, but it still

retains the main advantages of the Linux operating system, such as stability,

powerful network features and excellent file system support. In figure 1, S3C44B0X

microprocessor architecture block diagram shown.

Figure 1. S3C44B0X Microprocessor Architecture Block Diagram

Here are options for processor platforms, library functions, kernels, applications, etc.

that can be customized in the configuration. The main configuration options of the

system kernel customization are shown in Table I.

Table I. Kernel Customization Options

OPTION MEANING SET THE DEFAULT

Vendor/Product Supplier / Product

Selection

Samsung/44B0X

Kernel Kernel version selection Linux-2.4.x

Libc Version Library version selection μC-libc

System Type System architecture type

configuration

Generate big endian

code

Whether to generate big

endian format code

No

ACTA UNIVERSITATIS DANUBIUS Vol. 15, No. 1/2021

12

Set flash/SDRAM size

and base addr

Set the address and size of

flash/SDRAM

According to hardware circuit

settings

General setup General configuration

Networking support Whether to support the

network

√

Networking options Network configuration

options

Packet socket Support direct dialogue

with network devices

√

TCP/IP networking Support TCP/IP protocol √

Block devices Block device configuration

RAM disk support Whether to support RAM

disk

√

File systems File system configuration

ROM file system

support

Whether to support

ROMFS

√

Second system support Whether to support Ext2 √

Network File Systems Whether to support NFS √

Character devices Character device

configuration

Serial devices support Whether to support serial

port

√

The main customization options for the user program of this system are shown in

Table 4-2.

Table II. User Program Customization Options

USER PROGRAM DESCRIPTION SET THE DEFAULT

Core Applications Kernel application

login a simple login program √

Sash 、sh Improved shell program √

File system

Applications

File system application

Httpd Another WebServer for embedded

applications, simpler than boa, takes

up less memory

√

Network

Applications

Web application

boa WebServer for embedded system

applications

√

ftp FTP client program √

ping Network test program ping √

portmap TCP port mapper √

ISSN: 1844-7562 COMMUNICATIO

 13

telnet Remote login client program √

Miscellaneous

Applications

Other applications

gdbserver The target system remote

debugging program cooperates with

the GDB software on the host to

remotely debug the program
running on the target system.

√

tip Serial port connection program √

busybox A set of tools for embedded

applications. Currently

implemented many commands, cp,

chmod, cat, ln, ls, gzip, ifconfig,

mount, etc.

mount： support

NFS mount

 √

After the kernel and application are configured, select Save and then compile the

kernel and application.

 Search for the dependency between μClinux compiled output and source code, and

generate dependent files accordingly.

 Compile the μC-libc function library to generate libc. a and libm. a function library file.

 Compile the user application.

 Generate the romfs file system (romfs directory) according to the compiled user program.

 Generate a file system image file according to the romfs directory, then compile the kernel

and generate a kernel image file. Finally, generate 2 files in the images directory: image. Rom

and romfs. Img. At this point, μClinux has been compiled. I have already said that the boot

software bootloader burns to the 1 to 4 sectors of Flash, and now the compiled kernel image

will be compiled. The rom burns to 5 to 64 sectors (starting address is 0x00010000), and the

file system is imaged romfs. Img burns to 65 to 127 sectors (starting address is 0x00100000).

Then restart the target board, μClinux will be able to run. The μClinux startup screen is shown

in Figure 2.

ACTA UNIVERSITATIS DANUBIUS Vol. 15, No. 1/2021

14

Figure 2. μClinux Startup Screen

3. Implementation of Embedded Web Server Based on Boa

Boa Overview

Boa is a single-tasking web server that differs from traditional web servers in that

boa does not fork new processes for each connection, nor does it fork itself for

handling multiple connections. Boa handles all connection requests in a time-sharing

manner and only forks the CGI process (this is a separate process). Tests show that

boa can process thousands of requests per second, nearly twice as fast as the Apache

server (Song, Huaping, Wang; Kong & Zang, 2018, pp. 140-146).

The main goals of boa design are speed and safety. The security of boa means that

the web server will not be accessed by unauthenticated users and can encrypt the

information. The boa server has an SSL option for security when it is configured.

This is not discussed in this article. For details, refer to the related document

(Xiuquan, Guoshun, Lei Guo & Yukai, 2014, pp. 276-296).

Boa compilation and configuration in μClinux

First download boa-0.94.14rc21.tar.bz2 from www.boa.org and unzip it under

Redhat linux. Then go to the decompression directory and compile boa using the

cross-compiler tool arm-elf-gcc. The executable file boa in elf format can be

generated. Use the arm-elf-strip -g boa command to remove the included compilation

information to reduce the space occupied. The μClinux system uses the romfs file

system to require less space than the normal ext2 file system. Therefore, the elf2flt

ISSN: 1844-7562 COMMUNICATIO

 15

tool is required to convert the generated boa executable file from the elf format to

the flat format.

In order to be able to run boa on ARM, you need to set its runtime environment,

parameters, etc., and put the final configuration file boa.conf in the appropriate

location. The configuration of the web server can be implemented by modifying the

configuration file boa.conf. The main configuration options are as follows:

Port 80 #Define the port number of the server;

User 0 #Define which users can enter;

Group 0 #Define those user groups can enter;

DocumentRoot /home/web #Define the root directory of the web server;

DirectoryIndex index.html #Define Web Home Name;

MimeTypes /home/web/mime.types #Define the location of the mime.types file;

ScriptAlias /cgi-bin/ /home/web/cgi-bin/ #Define the CGI program directory;

The configuration files boa.conf and mime.typesindex.html are stored in the

embedded system /home/web directory, then copy the CGI script file Server.cgi to

the /home/web/cgi-bin directory, and;

Add the “boa –c /home/web &” command to the /μClinux-dist/romfs/etc/rc file to

automatically start the boa web server. Execute commands through the image

creation tool;

genromfs –v -f romfs.img -d /μClinux-dist/romfs;

Generate the romdisk image file romfs.img, and download romfs.img to the flash

memory through the bootloader. Then restart μClinux, the boa server will

automatically run in the background.

Design of CGI Programs in Boa Server

The main job of setting up the boa server is the design of the CGI program and the

writing of the page file. This article has written a CGI program based on the working

principle of CGI, which can generate corresponding dynamic pages according to the

request of the browser, and can realize certain user verification functions and control

functions.

ACTA UNIVERSITATIS DANUBIUS Vol. 15, No. 1/2021

16

Place index.html and related web files in the /μClinux-0408/romfs/home/web

directory, and add the “boa –c /home/web &” command to the /μClinux-

0408/romfs/etc/rc file. Boa Web server, then compile Server.c with arm-elf-gcc and

copy it to the /home/web/cgi-bin directory.

As mentioned above, the files under the entire romfs are packaged with the genromfs

tool to regenerate the romfs.img file and burned to the flash. The target board can be

restarted to automatically run the boa server. When the user enters the form data on

the browser side, the CGI program. The user request is processed and a response

message is generated. The target board IP address is set to 192.168.1.100. After

typing 192.168.1.100 in IE, the login page shown in Figure 3 is displayed.

Figure 3. Boa Server Login Page

After correctly entering the user name and password, the page shown in Figure 4 will

be displayed. This page displays a form. According to the user’s different choices,

different requests are generated and sent to the web server. After processing by the

CGI program. , then return the results page to the browser. For example, after

selecting Timer Control, the page shown in Figure 5 is displayed.

Figure 4. Boa Server System Main Page

ISSN: 1844-7562 COMMUNICATIO

 17

Figure 5. Boa Server Control Page

Implementation of a Specific Function Embedded Web Server

The embedded Web server is different from the general server. Considering the

limited resources of the system, the design is highly targeted. Some design ideas of

the web server in this system are as follows:

 The main function of this web server is for the monitoring and configuration of the

embedded system, so only the pages related to the system control are implemented.

 The web server only processes GET and POST request methods, and does not provide

processing for other request methods and CGI.

 The web server can only accept one request at the same time, parse the request and return

it after processing, and then accept the next request. This is unrealistic for a general-purpose

web server, but acceptable for embedded systems.

 The web server and the CGI are independent in the general system. In this system, the

compact type is considered, and the CGI function is incorporated into the web server.

 The system can implement simple user authentication.

 The system has some static pages built in, and sends different pages to the browser

according to the user’s request. When you need to generate a dynamic page, insert the data

into a static page.

 It realizes the timed task and simple historical data storage function, which can generate

data and store it regularly, which can be queried and displayed.

 The user can monitor the system through the browser to implement some basic control

functions.

ACTA UNIVERSITATIS DANUBIUS Vol. 15, No. 1/2021

18

4. Conclusion

With the development of embedded systems and network technologies, embedded

Web servers are increasingly used in industrial control, smart home and other fields.

The embedded Web server function is an inevitable trend in the development of

embedded products. This article uses the μClinux operating system as a development

platform on the S3C44B0X development board to implement a specific function

embedded Web server. The web server can process the GET and POST requests of

the HTTP protocol, can form the dynamic data webpage for the user to browse and

view, and can also accept the user’s request to control the interface of the embedded

device, and can also browse the previous historical data. This embedded Web server

provides a web-based remote access method for management and control devices,

enabling automatic data collection and control in industrial and home areas. Through

this research and development, you can explore the embedded Web server

development model in ARM+μClinux system. The server program code is written

in C language and has strong portability and scalability. In addition, web applications

can be easily ported to other embedded operating systems as needed. At the same

time, the implementation of the Web server lays a good foundation for the design of

more efficient and more complete servers in the future.

References

http://www.μCdot.org/article.pl?sid=03/07/30/0114226&mode=thread.

Jason D. Bakos (2016). Chapter 1: The Linux/ARM embedded platform. Embedded Systems, pp 1-47.

Jiyou, Fei; Ran, Deng; Zhao, Zhang & Mo, Zhou (2011). Research on Embedded CNC Device Based

on ARM and FPGA. Procedia Engineering, Volume 16, pp. 818-824.

Toulson, Rob & Wilmshurst, Tim (2017). Chapter 1: Embedded Systems, Microcontrollers, and ARM.

Fast and Effective Embedded Systems Design (Second Edition), 2017, pp. 3-18.

Shisheng Jia & Changqing Ma (2011). The Design of the Embedded WEB Server Based on ENC28J60.

Procedia Engineering, Volume 15, 2011, pp. 2670-2674.

Song, Wei; Liu, Huaping; Wang, Jiajia; Yan Kong & Zang, Weidong (2018). MATHT: A web server

for comprehensive transcriptome data analysis. Journal of Theoretical Biology, Volume 455, 14

October 2018, pp. 140-146.

Wookey & Tak-Shing (2002). Porting the Linux Kernel to aNew ARM Platform.

www.intel.com/pca/developernetwork, Vol. 4, pp. 52-59.

Qiao, Xiuquan; Nan, Guoshun; Tan, Wei; Guo, Lei & Tu, Yukai (2014). CCNxTomcat: An extended

web server for Content-Centric Networking,” Computer Networks, Volume 75, Part A, pp. 276-296.

