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Abstract: Support Vector Machines (SVMs)have found many applications in various fields. They 

have been introduced for classification problems and extended to regression. In this paperI review the 

utilization of SVM for classification problems and exemplify this with application on IRIS datasets. I 

used the Matlab programming language to implement linear and nonlinear classificators and apply 

this on the dataset.  
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1 Introduction 

Support vector machines have a relatively short history being recently introduced, 

in the early 1990s. However, they are based on decades of research in 

computational learning theory done by Russian mathematicians Vladimir Vapnik 

and Alexey Chervonenkis. This theory, presented in the book of Vapnik from 1982 

Estimation of Dependences Based on Empirical Data, was called Vapnik-

Chervonenkis theory or simply VC theory (Vapnik, 2006). This book describes the 

implementation of support vector machines for linearly separable data (Cortes & 

Vapnik, 1995). A number of important extensions were made to the SVM. In 1992, 

Boser, Guyon and Vapnik proposed the use of kernel trick of Aizerman's to 

classify data separable using polynomial functions or radial basis functions. In 

1995, Cortes and Vapnik extended the theory so that it can be applied for the 

training data inseparable, using a cost function. Later, in 1996 (Drucker, 1996), 

was developed a method for regression based on support vector.  

It should be noted that there are many different algorithms for SVMs like SVM 

Lagrangian (LSVM), Lagrangian finite Newton SVM (NLSVM) or finite Newton 

SVM (NSVM), a comparison between different methods is shown in (Shu-Xia Lu, 

2004).  
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A Support Vector Machine (SVM) is a machine learning that can be used in 

classification problems (Cortes & Vapnik, 1995) and regression problems (Smola, 

1996).  

In order to perform classification, SVMs seek an optimal hyperplane that separates 

data into two classes. In Figure 1are presented some possibilities of linear 

separation of two sets of elements.  

 

Figure 1. Different variants of linear separation of two sets  

(Guggenberger, 2008) 

Support vector machine are also called classifiers with maximum edge. This means 

that the resulted hyperplane maximizes the distance between the closest vectors 

from different classes taking into account the fact that a greater margin provides 

increased SVM generalization capability.  
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Figure 2. Optimal separating hyperplane. The vectors on dotted lines are support 

vectors  

(Guggenberger, 2008) 

The elements closest to the optimal separating hyperplane are called support 

vectors and only they are considered by the SVMs for the classification task. All 

other vectors are ignored.  

 

2. Optimal Separating Hyperplane 

The basic problem that SVM learns and solves is that of classification in two 

categories of a data set.  

Classification problem implies a set of observations represented as pairs (xi, yi), i = 

1, …, r, where xi∈ℝn and yi∈{-1, 1}. Each observation contains an n-dimensional 

vector and an associated class. The aim is to determine the optimal separation 

hyperplane, that is the hypersurface (n-1)-dimensional, which best separates the 

two classes Figure 3.  
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Figure 3. Optimal Separating Hyperplane  

(Gunn, 1998) 

The simplest situation is that there exist a hyperplane defined by a normal vector w, 

which separates the classes,  

 0, =+bxw  (1) 

Because this hyperplane is invariant to scalar multiplication, we can choose w and 

b so as to meet the requirement 

 1,min =+ bxw i
i

 (2) 

Constraint in equation (2) tells us that the norm of weight vector w must be equal to 

the inverse distance from the nearest point of the dataset to hyperplane.  

Also, the equation (2) leads to a breakdown of points in two categories.  

 1, +bxw i  (3) 

 1, −+bxw i  (4) 

Assuming that the first category corresponds to points labeled 1 and the second 

category to points labeled -1, the two inequalities are rewritten as 

   ribxwy ii ,...,1,1, =+ .  (5) 

1, =+ bxw i and 1, −=+bxw i  are two hyperplans parallel with separating 

hyperplane. This is represented in Fig. 2., where the separating hyperplane is 
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represented by a solid line and those two parallel hyperplans by dotted lines. 

Dotted lines contain some of the training points. These points are called support 

vectors and completely determines the solution of classification problem. The 

distance between the dotted lines is called margin and is to be maximized.  

The margin is ( )
w

bwρ
2

, =  and the maximization of margin is equivalent with 

maximization of the function  

 ( ) 2

2

1
wwL =  (6) 

with constraints (5).  

The solution to optimization problem (6) with constraints (5) is given by the saddle 

point of Lagrange functional (Minoux, 1986),  

 ( )  ( )
=

−+−=
r

i

i bxwyαwαbwL ii

1

2
1,

2

1
,,  (7) 

wereα  is the vector of the Lagrange multipliers.  

The Lagrangian must be minimized in rapport with w, b and maximized in function 

of 0α . Classic theory of Lagrange duality allow us to transform the primal 

problem (7) in the dual problem, which is easier to solve. The dual problem has the 

form,  

 ( ) ( )
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Solving equation (10) with constraints (11) is determined Lagrange multipliers and 

optimal separating hyperplane, given by 
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 (12) 

where kx  and sx  are any of support vectors coming from the two classes, that 

satisfy relations 0, sk αα and 1,1 =−= sk yy .  

Then, the hard classifier (inflexible edges)  

 ( ) ( )**,sgn bxwxf += .  (13) 

From Kuhn-Tucker conditions,  

  ( ) ribxwyα iii ,...,1,01, ==−+ ,  (14) 

result that only points ix that satisfy 

   1, =+ bxwy ii ,  (15) 

will have nonzero Lagrange multipliers. These points are called support vectors 

(SV). If the data is linearly separable all support vectors will be on edge and their 

number can be very small. Consequently, the hyperplane is determined by a small 

subset of the training set. Eliminating from the training set points that are not 

support vectors and recalculate the optimal separating hyperplane will achieve the 

same result. Thus, support vector machines (SVM) are used to summarize 

information contained in the training data using support vector.  

 

3. Generalised Optimal Separating Hyperplane 

Most times the data provided for classification are not linearly separable. One way 

to perform classification in such cases is generalized optimal separating 

hyperplane. It separates linear data supporting classification errors. In Fig. 4. we 
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have an intuitive graphical representation of generalized optimal separating 

hyperplane.  

 

Figure 4. Generalized Optimal Separating Hyperplane  

(Gunn, 1998) 

Cortes and Vapnik introduced variables 0iξ  that mesures the classification 

errors (Cortes & Vapnik, 1995).  

In these conditions, the optimization problem will minimize classification errors. 

Constraints for the inseparable case will be of the form 

   riξbxwy iii ,...,1,1, =−+ .  (16) 

where 0iξ .  

Generalized optimal separating hyperplane is determined by the vector w  that 

minimize the functional 

 ( ) 
=

+=
r

i

iξCwξwL
1

2

2

1
,  (17) 

with constraints (16), where C is a given constant.  
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The solution of minimization of the functional (17) with constraints (16) is given 

by the saddle point of the following Lagrangian (Minoux, 1986),  

( )  ( ) 
= ==

−+−+−+=
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iiii
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i ξβξbxwyαξCwβξαbwL ii
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2
1,

2

1
,,,, ,  (18) 

whereα  and β  are the Lagrange multipliers. The Lagrangian must minimized 

about w, b, x and maximized about α , β . To solve this optimization problem is 

recalled, as in the classical case at the dual problem  

 ( ) ( )
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Explicitly, the dual problem is written 
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and the solution is 
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with constraints 
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The solution of minimization problem in the case of linearly inseparable data is 

identical to those from data linearly separable case except the bounds of Lagrange 

multipliers. Yet, there was an additional problem, namely determining the 

coefficient C. This parameter offers new possibilities to control over the classifier. 

Blanz and collaborators have used the value C = 5 (Blanz et al, 1996), other 

researchers regard C as directly related to a regularization parameter (Smola & 

Scholkopf, 1998), but eventually C must be chosen so that to reflect the knowledge 

of noise from data (Gunn, 1998).  
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4. Generalization in Multidimensional Feature Space 

Another approach to separate two classes is to transfer, using a nonlinear 

applications, the input space into a feature space with higher dimension in which 

data can be separated using optimal separating hyperplane Fig. 5.  

The idea is based on the method introduced by Aizerman and colleagues 

(Aizerman, Braverman & Rozonoer, 1964) which eliminates problems arising from 

increasing the dimension (Bellman, 1961).  

Nonlinear functions that can be used must meet certain conditions, known as 

Mercer conditions. Among the most used functions that satisfy these requirements 

we mention the polynomial, the base radial and sigmoidal functions.  

 

 

Figure 5. Using a higher dimension space for the linear separation of data  

(Lovell & Walder, 2006) 

The optimization problem in this case, can be written 
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where ),( K  is the kernel function that performs nonlinear translation of input 

space to feature space and the constraints are the same as for generalized linear 

case 
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It solves the optimization problem (23) with the restrictions (24) and determine the 

Lagrange multipliers. With this is build a hard classifier in feature space 
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with kx  and sx  any of the support vectors coming from the two classes.  

 

5. Case Study Iris Dataset 

For exemplification of SVM classification we use Iris data set (Fig. 6. ). It consists 

of 150 observations, 50 Iris setosa, 50 Iris versicolor and Iris virginica 50, with 4 

characteristics: length of sepals, sepals width, length of petals and petals width.  
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Figure 6. Representations of Iris data set based on pairs of two features  

(http://en. wikipedia. org/wiki/File:Anderson%27s_Iris_data_set. png, accessed in 2012) 

Iris data set has been extensively used for exemplification of classification and 

grouping methods because in binary representations have both linearly separable 

classes (iris setosa - iris versicolor and iris setosa - iris virginica) and classes that 

are not linearly separable (iris virginica - iris versicolor).  

For exemplification of different methods of classification we use the graphic 

representation sepals length versus petals length.  

http://en.wikipedia.org/wiki/File:Anderson%27s_Iris_data_set.png
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Figure 7. The representation sepals length versus petals length of iris dataset  

For linear separation we use classes Iris setosa and Iris versicolor (Fig. 8. ) And for 

nonlinear classification we exemplify using classes iris virginica and iris versicolor 

(Fig. 10. ).  

 

Figure 8. Iris versicolor and iris setosa according to the length of sepals and the length 

of petals 

 

Figure 9. Linear separation of classes iris setosa and iris versicolor with highlighting 

of support vectors 
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Figure 10. Iris versicolor and iris virginica according to the length of sepals and the 

length of petals  

In this case we note that data are not linearly separable, so we use linear classifier 

with flexible edges and nonlinear classifiers.  

 

Figure 11. Linear separation with flexible edges of classes iris virginica and iris 

versicolor with highlighting of support vectors  

 

Figure 12. Nonlinear separation using a polynomial kernel of classes iris virginica and 

iris versicolor with highlighting of support vectors  
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Figure 12. represents a case of using a polynomial kernel of order 3 and Fig 13. a 

situation encountered for a kernel of type radial basis function.  

 

Figure 13. Nonlinear separation using a kernel of type radial basis function of classes 

iris virginica and iris versicolor with highlighting of support vectors  

 

Figure 14. Nonlinear separation using a kernel of type quadratic function of classes 

iris virginica and iris versicolor with highlighting of support vectors  

For a quadratic kernel In the case of a kernel of multilinear perceptron type.  

 

Figure 15. Nonlinear separation using a kernel of type multilinear perceptron of 

classes iris virginica and iris versicolor with highlighting of support vectors  
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5. Conclusion 

SVM is one of the most promising algorithms in machine learning field and there 

are many examples in which SVMs are successfully used, for example, text 

classification, face recognition, character recognition (OCR - Optical Character 

Recognition), Bioinformatics. On these datasets SVMs apply very well and often 

exceeds the performance of other traditional techniques. Of course, this is not a 

magic solution as set forth in (Bennett & Campbell, 2000), there are still some 

open issues, such as incorporation of domain knowledge, a new model selection 

and interpretation of results produced by SVMs.  

SVMs have been used in several real-world problems: 

• classification of text (and hypertext); 

• image classification; 

• in bioinformatics (protein classification, classification of types of cancer); 

• classification of music; 

• handwritten character recognition.  

In (Chen, Jeong & Hardie, 2008), the authors propose a method GARCH 

(Generalized AutoRegressive Conditional Heteroscedasticity) based on recurrent 

SVR whose performance exceeds other approaches such as moving average, 

recurrent neural networks and parameterized GARCH in terms of their ability to 

predict the financial market volatility. Important aspect that recommend the use of 

SVM we mention the absence of local minima, control solution capacity (Christiani 

& Shawe-Taylor, 2000) and the ability to effectively use multidimensional data 

(Cortes & Vapnik, 1995).  

Strengths of SVM: 

• Training is relatively easy to achieve; 

• No local optimal, unlike neural networks; 

• Suitable for multidimensional data relatively well; 

• Non-traditional data such as strings and trees can be used as input to SVM, 

instead of feature vectors; 

• The compromise between complexity and classification error can be 

controlled explicitly; 

• By performing logistic regression (sigmoidal) with SVM on a set of output 

data, SVM can be interpreted in terms of probability.  

Weaknesses of SVM: 

• It needs a good choice for kernel function; 

• Training takes a long time.  

In graphic representations can see the small number of support vectors, basically 

those who are using the classifier. Due to the small number of support vector 

classification of new cases require scarce resources of time and computing power.  
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The best classification for linearly inseparable case, were obtained for polynomial 

and radial basis kernels which underlines once again the importance of a correct 

choice for the kernel function used.  
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On the General Theory of Production Functions 

 

Catalin Angelo Ioan1, Gina Ioan2 

 

Abstract: In this paper we will study from an axiomatic point of view the production functions. Also 

we will define the main indicators of a production function, extending the classical definitions to n 

inputs and introducing other new. We will modify the notion of global average productivity and 

replace it with more realistic indicators. On the other hand, the notion of global rate of substitution 

will be introduced to the analysis of n goods.  

Keywords: production function; productivity; marginal 

JEL Classification: D01 

 

1. Introduction 

In any economic activity, obtaining a result of this means, implicitly, the existence 

of any number of resources required for a good deployment of the production 

process. We will assume that resources are indefinitely divisible, which implies the 

possibility of using specific tools of mathematical analysis to onset specific 

phenomena.  

We then define on Rn the production space for n fixed resources as 

SP=(x1,...,xn)xi0, i= n,1  where xSP, x=(x1,...,xn) is an ordered set of 

resources.  

Because inside a production process, depending on the nature of applied 

technology, but also its specificity, not any amount of resources is possible, we will 

restrict production space to a subset DpSP – called the domain of production.  

In the context of the existence domain of production, we will put the issue of 

determining its results (output) depending on the resources (inputs) of Dp.  

We will call a production function an application: 
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Q:Dp→R+, (x1,...,xn)→Q(x1,...,xn)R+(x1,...,xn)Dp 

For an efficient and complex mathematical analysis of production functions, we 

will require a series of axioms (but not all essential) both its definition domain and 

its scope.  

FP1. The production domain is convex.  

Dp’s convexity only means that if x=(x1,..., xn), y=(y1,...,yn)Dp then [0, 1] 

follows x+(1-)y=(x1+(1-)y1,...,xn+(1-)yn)Dp.  

FP2. If all resources are zero then the output is zero.  

The FP2 axiom states that Q(0,..., 0)=0.  

FP3. The production function is continuous.  

The continuity, purely mathematical, means that for any fixed point ( )n1 x,...,x  of 

the domain of production Dp and a range of inputs (yk)k1, yk= ( )k
n

k
1 y,...,y  that 

converges to ( )n1 x,...,x , the production ( )k
n

k
1 y,...,yQ  converges to ( )n1 x,...,xQ .  

An axiom, not necessarily required, but very useful for obtaining significant results 

is: 

FP4. The production function admits partial derivatives of order 2 and they are 

continuous (the function is of class C2 on Dp).  

Before commenting on this axiom, let note that all elementary functions are of 

class C on their domain of definition. Therefore, the class membership C is no 

way restrictive. It should also be noted that a function of class Ck, k0 is 

continuous, therefore the axiom FP4 implies automatically FP3.  

FP5. The production function is monotonically increasing in each variable.  

The FP5 axiom says that, in caeteris paribus hypothesis for any i= n,1 , if xiyi then: 

( )n1ii1i1 x,x,x,x,...xQ +−  ( )n1ii1i1 x,x,y,x,...xQ +−  kx 0, k= n,1 , ki such that 

( )n1ii1i1 x,x,x,x,...x +− , ( )n1ii1i1 x,x,y,x,...x +− Dp.  

If the function Q is at least class C1, the increasing monotony is equivalent to: 
ix

Q





0, i= n,1 .  

From the axiom FP5 follows the global increasing related to the inequality 

relationship of Rn: 
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FP5’. The production function is monotonically increasing with respect to the 

relationship of inequality of Rn.  

Indeed, if x1y1,...,xnyn then: 

Q(x1, x2,...,xn)Q(y1, x2,...,xn)Q(y1, y2,...,xn)...Q(y1, y2,...,yn) 

A condition often mentioned in the definition of production function is: 

FP6. The production function is quasi-concave.  

The quasi-concavity of a function means that: 

Q(x+(1-)y)min(Q(x), Q(y)) [0, 1] x, yDp 

Geometrically speaking, a quasi-concave function has the property to be above the 

lowest values recorded at the ends of some segment. This property is equivalent 

with the convexity of the set Q-1[a, ) aR, where Q-1[a, )= {xRpQ(x)a}.  

On the other hand, let note that any monotone function defined on a convex set is 

quasi-concave, so the condition can be eliminated.  

To simplify further considerations, however, we require an additional condition, 

namely: 

FP6’. The production function is concave.  

The concavity of a function means that: 

Q(x+(1-)y)Q(x)+(1-)Q(y) [0, 1] x, yDp 

or, in other words, its graph is above all straight line determined by any points of it.  

Let note also, that a concave function defined on a convex domain is automatically 

quasi-concave (but not each other).  

Following the concavity, we have that the production increases more slowly with 

amplification of production factors.  

Considering a production function Q:Dp→R+ and QR+ - fixed, the set of inputs 

which generate the production Q  called isoquant. An isoquant is therefore 

characterized by: {(x1,...,xn)DpQ(x1,...,xn)= Q } or, in other words, it is the 

inverse image Q-1( Q ).  

We will say that a production function Q:Dp→R+ is constant return to scale if 

Q(x1,...,xn)=Q(x1,...,xn), with increasing return to scale if 

Q(x1,...,xn)>Q(x1,...,xn) and decreasing return to scale if 

Q(x1,...,xn)Q(x1,...,xn) (1, ) (x1,...,xn)Dp.  
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2. The Main Indicators of Production Functions 

Let a production function: 

Q:Dp→R+, (x1,...,xn)→Q(x1,...,xn)R+(x1,...,xn)Dp 

We will call the marginal physical production (marginal productivity) relative to a 

production factor xi: 
ix =

ix

Q




 and represents the trend of variation of production 

at the variation of the factor xi.  

In particular, for a production function of the form: Q=Q(K, L) we have K=
K

Q




 - 

called the marginal efficiency of capital and L=
L

Q




 - called the marginal 

efficiency of labor.  

We call the average physical production (productivity) relative to a production 

factor xi: 
ixw =

ix

Q
 and represents the value of production at the consumption of a 

unit of factor xi.  

In particular, for a production function of the form: Q=Q(K, L) we have: wK=
K

Q
 - 

called the productivity (efficiency) of capital, and wL=
L

Q
 - the productivity of 

labor.  

In the general case of the variation of all inputs, for k1 units of input 1,...,kn units of 

input n, we will consider first the simple way :[0, 1]→Rn, (t)=(tk1,..., tkn). This is 

nothing more than the large diagonal of the n-dimensional parallelepiped: [0, 

k1]...[0, kn]. Let also the differential form: 

dQ=
1x

Q




dx1+...+

nx

Q




dxn 

that is continuous everywhere after the C2 character of Q. Along the path , the 

integral of dQ is defined by: 




dQ =  














++



1

0

nn1

n

1n1

1

dt)t('))t(),...,t((
x

Q
...)t('))t(),...,t((

x

Q
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Where 1,..., n are the components of . The Leibniz-Newton's theorem for exact 

differential forms (forms with property Q such that =dQ) states that: 


dQ

=Q((1))-Q((0)).  

In the present case: 

Q(k1,..., kn)-Q(0,..., 0)=  













++



1

0

nn1

n

1n1

1

dtk)tk,...,tk(
x

Q
...k)tk,...,tk(

x

Q
= 

 ++
1

0

n1xn

1

0

n1x1 dt)tk,...,tk(k...dt)tk,...,tk(k
n1

 

Because Q(0)=0, resulting the final formula: 

Q(k1,..., kn)=  ++
1

0

n1xn

1

0

n1x1 dt)tk,...,tk(k...dt)tk,...,tk(k
n1

 

The marginal coefficient of a factor xi is 
ix =

Q

x i




 and represents the trend of 

variation of xi (caeteris paribus) relative to Q or, otherwise, the change production 

needs for an additional input at an infinitesimal variation of production.  

In particular, for a production function of the form: Q=Q(K, L) we have: K=
Q

K




 - 

the marginal capital coefficient and L=
Q

L




 - the marginal coefficient of labor.  

We will call also, the average coefficient of a production factor xi:
ix =

Q

x i  and it is 

the necessary of factor (caeteris paribus) to achieve a given level of production.  

In particular, for a production function of the form: Q=Q(K, L) we have: K=
Q

K
 - 

the average coefficient of capital, and L=
Q

L
 - the average coefficient of labor.  

It is obvious that: 

ix =

ixw

1
, 

ixw =

ix

1


 

and, if caeteris paribus hypothesis: 
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ix =

ix

1


, 

ix =

ix

1


 

In particular, for Q=Q(K, L) we have: 

K=
Kw

1
, wK=

K

1


, L=

Lw

1
, wL=

L

1


, K=

K

1


, K=

K

1


, L=

L

1


, L=

L

1


 

It is called global average productivity the ratio of output produced and the sum of 

all factors of production used: 

wav, g=


=

n

1i
ix

Q
 

With the concept of the notion of average coefficient of a factor of production, we 

can write: 

wav, g=


=

n

1i
ix

Q
=


=

n

1i

i

Q

x

1
=


=


n

1i
x i

1
 

By analogy with this notion, we will call global marginal productivity: 

wmarg, g=


=


n

1i
x i

1
 

In discrete terms, we have: 

wmarg, g=


=


n

1i
x i

1
=


= 

n

1i

i

Q

x

1
=


=




n

1i
ix

Q
 

therefore the marginal productivity represents the global changes obtained from the 

additional production from each factor.  

In connection with these last two indicators ought to make some clarifications. On 

the one hand, the global average productivity and the overall marginal have the 

disadvantage of dividing the production to an amount of heterogeneous factors of 

production. On the other hand, geometrically speaking, the two types of 

productivity are not clear and have not an unambiguous representation as in the 

case of average productivity or marginal corresponding to a single factor.  
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For this reason, we will define another indicator of global average productivity, 

even if not appropriately respond to the objection above, will satisfactorily answer 

to the second requirement.  

We will call global average productivity in the meaning of the Euclidean norm, the 

ratio of the production and the norm of the vector inputs: 

wav, gn=


=

n

1i

2
ix

Q
 

We therefore have: 

wav, gn=


=

n

1i

2
ix

Q
=


=








n

1i

2

i

Q

x

1
=


=


n

1i

2
x i

1
 

Another useful formula can be obtained considering the angles that determine the 

input vector with the coordinate axes: 

cosi=


=

n

1i

2
i

j

x

x
, i= n,1  

It follows: 

wav, gn=


=

n

1i

2
ix

Q
=


=

n

1i

2
i

j

j
x

x

x

Q
=


=

n

1i

2
i

j

x

x

x
w

j
= jx cosw

j
 , j= n,1  

We will call now the overall marginal productivity in the meaning of the norm: 

wmarg, gn=


=


n

1i

2
x i

1
 

In discrete terms, we have: 

wmarg, gn=


=


n

1i

2
x i

1
=

( )
( )


= 

n

1i
2

2

i

Q

x

1
=

( )
=





n

1i

2

ix

Q
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Considering the factors i and j with ij, we define the restriction of production 

area: Pij=(x1,...,xn)xk=ak=const, k= n,1 , ki, j, xi, xjDp relative to the two 

factors when the others have fixed values. Also, let: Dij=(xi, xj)(x1,...,xn)Pij - 

the domain of production relative to factors i and j.  

We define: Qij:Dij→R+ - the restriction of the production function to the factors i 

and j, i.e.: Qij(xi, xj)=Q(a1,..., ai-1, xi, ai+1,..., aj-1, xj, aj+1,...,an). The functions Qij 

define a surface in R3 for every pair of factors (i, j).  

We will call partial marginal rate of technical substitution of the factors i and j, 

relative to Dij (caeteris paribus), the opposite change in the amount of factor j to 

substitute a variation of the quantity of factor i in the situation of conservation 

production level.  

We will note below: 

RMS(i, j, Dij)=
i

j

dx

dx
−  

Since Qij(xi, xj)=Q0=constant, we obtain by differentiation: dQij(xi, xj)=0 that is: 

j

j

ij

i

i

ij
dx

x

Q
dx

x

Q




+




=0 therefore: 

j

ij

i

ij

i

j

x

Q

x

Q

dx

dx









=− =

ij

ij

D

j

D

i

x

Q

x

Q









=

ijj

iji

Dx

Dx




 

We can write: RMS(i, j, Dij)=

ijj

iji

Dx

Dx




 which is a function of xi and xj. In an 

arbitrary point x = ( )n1 x,...,x : 

RMS(i, j, x )=
)x(

)x(

j

i

x

x




 

Now consider the case in which all factors consumption varies. Let therefore be an 

arbitrary point x Dp such that Q( x )=Q0=constant and )x(
kx 0, k= n,1 . 

Differentiating with respect to x we have: 0=dQ=
= 

n

1j
j

j

dx
x

Q
 from where: 
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= 


+



 n

ij
1j i

j

ji dx

dx

x

Q

x

Q
=0. In terms of marginal production, we can write: 



=

+
n

ij
1j i

j

xx
dx

dx

ji
=0. Noting 

i

j

dx

dx
=yj, j= n,1 , ji, follows: 


=

+
n

ij
1j

jxx y
ji

= 0.  

With the partial substitution marginal rate introduced above, we get: 

1
)x,j,i(RMS

yn

ij
1j

j
−=


=

 

The above relationship is nothing but the equation of a hyperplane in Rn-1 of 

coordinates (y1,..., iŷ ,...,yn) (the sign ^ meaning that that term is missing) that 

intersects the coordinate axes in RMS(i, j, x ). This hyperplane is the locus of 

consumption factors variations relative to a change in the i-th factor consumption 

such that the production remains constant and is called the marginal hyperplane of 

technical substitution between factor i and the other factors (noted below Hmi, j).  

In particular, for two factors, the marginal hyperplane of technical substitution 

between the factor i and the factor j from R+, is reduced to: 1
)x,j,i(RMS

y j
−=  

where yj=
i

j

dx

dx
. Therefore, 

i

j

dx

dx
=-yj= )x,j,i(RMS−  which is consistent with the 

definition of the partial marginal rate of technical substitution.  

We will define now the global marginal rate of substitution between the i-th factor 

and the others as the distance from the origin to the marginal hyperplane of 

technical substitution, namely: 

RMS(i, x )=



=

n

ij
1j

2 )x,j,i(RMS

1

1
=



= 

n

ij
1j

2
x

2
x

)x(

)x(

1

i

j

=



=





n

ij
1j

2
x

x

)x(

)x(

j

i
 

We note that for the particular case of two factors, is obtained, as above: 

RMS(i, x )=
)x(

)x(

j

i

x

x
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Considering now v=(y1,..., iŷ ,..., yn)Hmi, j we have: v = 

=

n

ij
1j

2
jy  and from the 

Cauchy-Schwarz inequality: 

)x,i(RMS

v
= 


=

n

ij
1j

2
jy 


=

n

ij
1j

2 )x,j,i(RMS

1
 


=

n

ij
1j

j

)x,j,i(RMS

y
=1 

therefore v  )x,i(RMS .  

Like a conclusion, the global marginal rate of technical substitution is the 

minimum (in the meaning of norm) of changes in consumption of factors so that 

the total production remain unchanged.  

Considering now the marginal hyperplane of technical substitution: 

1
)x,j,i(RMS

yn

ij
1j

j
−=


=

 the equation of the normal from origin to it, is: 

)x,n,i(RMS

1

y
...

)x,1i,i(RMS

1

y

)x,1i,i(RMS

1

y
...

)x,1,i(RMS

1

y n1i1i1 ==

+

=

−

== +−  

from where: 





















=

+


=

−


=


=

+

−

)x,n,i(RMS
y

...

)x,1i,i(RMS
y

)x,1i,i(RMS
y

...

)x,1,i(RMS
y

n

1i

1i

1

, R 
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The intersection of the normal with the hyperplane, represents the coordinates of 

the point of minimal norm. We therefore have: 1
)x,j,i(RMS

n

ij
1j

2
−=




=

 from where: 

=



=

−
n

ij
1j

2 )x,j,i(RMS

1

1
 and the point of minimal norm has the coordinates: 















)x,n,i(RMS

1
,...,

)x,i,i(RMS

1̂
,...,

)x,1,i(RMS

1
)x(i,RMS- 2 =

( ))x(),...,x(ˆ),...,x(

)x(

)x(

ni1

j

i

xxxn

ij
1j

2
x

x





−



=

 

which norm is nothing else that RMS(i, x ).  

The coordinates of the above point is no more than minimal vector (in the meaning 

of norm) of changes in consumption so that total output remains unchanged. We 

will say briefly that this is the minimal vector of technical substitution of the factor 

i.  

In particular, for a production function of the form: Q=Q(K, L) we have: 

RMS(K, L)=
L

K




, RMS(L, K)=

K

L




 

It is called elasticity of production in relation to a production factor xi: 
ix =

i

i

x

Q

x

Q





=

i

i

x

x

w


 - the relative variation of production at the relative variation of factor xi.  
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In particular, for a production function of the form: Q=Q(K, L) we have K=

K

Q
K

Q





=

K

K

w


 - called the elasticity of production in relation to the capital and L=

L

Q
L

Q





=

L

L

w


 - the elasticity factor of production in relation to the labor.  

 

3. Application 

Considering now a production function Q:Dp→R+, (x1,...,xn)→Q(x1,..., 

xn)R+(x1,..., xn)Dp with constant return to scale, let note for an arbitrary factor 

(for example xn): 

i=
n

i

x

x
, i= 1n,1 −  

We will have: 

Q(x1,..., xn)=xn 









−

n

n

n

1n

n

1

x

x
,

x

x
,...,

x

x
Q =xn ( )1,,...,Q 1n1 −  

Considering the restriction of the production function at Dp 11n −
+R : 

( )1n1,...,q − = ( )1,,...,Q 1n1 −  we can write: 

Q(x1,..., xn)=xn ( )1n1,...,q −  

With the new function introduced, the above indicators are: 

• 
ix =

i

q




, i= 1n,1 −  

• 
nx = 

−

=





−

1n

1i
i

i

q
q  

• 
ixw =

i

q


, i= 1n,1 −  
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• 
nxw =q 

• RMS(i, j)=

j

i

q

q









, i, j= 1n,1 −  

• RMS(i, n)=


−

=





−





1n

1i
i

i

i

q
q

q

, i= 1n,1 −  

• RMS(n, j)=

j

1n

1i
i

i

q

q
q









−

−

=
, j= 1n,1 −  

• RMS(i)=


−


=

−

=

















+



















−





1n

ij
1j

2

j

2
1n

1j
j

j

i

qq
q

q

, i= 1n,1 −  

• RMS(n)= 





−

=

−

=























−

1n

1j

2

j

1n

1j
j

j

q

q
q

 

• 
ix =

i

i

q

q







, i= 1n,1 −  
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• 
nx =

q

q
q

1n

1i
i

i


−

=





−

 

 

4. Conclusion 

After the above analysis, we have seen that the analysis of production functions, on 

the one hand from the axiomatic point of view and, on the other hand, on the 

general case of n variables, reveals very interesting aspects.  

First, even a very restrictive axiomatization removes some of the common 

functions (Leontief case), it adds a more austerity to the notion, eliminating the use 

of, often negligent, of the production function.  

On the other hand, the extension of the main indicators in the case of n inputs, 

allows the removal, on the one hand, of some absurd concepts from our point of 

view, such as the global average productivity and replacing them with more 

realistic indicators. On the other hand, the notion of global rate of substitution 

removes the usual drawback of partial substitutions that restrict the scope 

sometimes dramatically.  
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