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Abstract: Currency market is recently the largest world market during the existence of which there 

have been many theories regarding the prediction of the development of exchange rates based on 

macroeconomic, microeconomic, statistic and other models. The aim of this paper is to identify the 

adequate model for the prediction of non-stationary time series of exchange rates and then use this 

model to predict the trend of the development of European currencies against Euro. The uniqueness 

of this paper is in the fact that there are many expert studies dealing with the prediction of the 

currency pairs rates of the American dollar with other currency but there is only a limited number of 

scientific studies concerned with the long-term prediction of European currencies with the help of the 

integrated ARMA models even though the development of exchange rates has a crucial impact on all 

levels of economy and its prediction is an important indicator for individual countries, banks, 

companies and businessmen as well as for investors. The results of this study confirm that to predict 

the conditional variance and then to estimate the future values of exchange rates, it is adequate to use 

the ARIMA (1,1,1) model without constant, or ARIMA [(1,7),1,(1,7)] model, where in the long-term, 

the square root of the conditional variance inclines towards stable value.  

Keywords: ADF; stationarity; ARIMA; EUR; prediction 

JEL Classification: C32; C53; F31 

 

1 Introduction: Literature Review 

In today’s global economy, the crucial importance for any future investments is the 

accuracy in predicting the foreign exchange rates or at least the correct prediction 

of the trend. There already are a great number of methods for predicting the 

exchange rates. It was shown by Robert Meese (MEESE R., 1983) that models 

based on the random walk hypothesis in predicting exchange rates are better than 

those based on macroeconomic indicators. However, this does not apply for the 
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long-term prediction, which was proved by examining the prediction of USD 

exchange rate against four other currencies during seventeen years (MARK N., 

1995).  

Predictions of exchange rates made with the use of ARIMA models were started in 

nineties by economists Bellgard and Goldschmidt (BELLGARD C., 1999). 

However, they concluded that these models are not very suitable for predicting the 

exchange rates.  Dunis and Huang (DUNIS C., 2002) who were using ARMA (4,4) 

were of the opposite opinion; their results were, however, insignificant.  

Another example of a study using Box Jenkins models is for instance the paper 

“Exchange-rates forecasting: exponential smoothing techniques and ARIMA 

models”, in which the authors investigated the behavior of daily exchange rates of 

the Romanian Leu against Euro, United States Dollar, British Pound, Japanese 

Yen, Chinese Renminbi and the Russian Ruble (FĂT M., 2011). 

Weisang and Awazu (WEISANG G., 2008) presented three ARIMA models which 

used macroeconomic indicators to model the USD/EUR exchange rate. They 

discovered that over the time period from January 1994 to October 2007, the 

monthly USD/EUR exchange rate was best modeled by a linear relationship 

between its preceding three values and the current value. These authors also 

concluded that ARIMA (1,1,1) is the most suitable model for the prediction of the 

time series of USD/EUR exchange rate. 

Another often used method for predicting the trend of exchange rates is the ANN 

model (Artificial Neural Network). Kamruzzaman J. a Ruhul A. Sarker 

(KAMRUZZAMAN J., 2003) developed and investigated three ANN based 

forecasting models using Standard Backpropagation (SBP), Scaled Conjugate 

Gradient (SCG) and Backpropagation with Baysian Regularization (BPR) for 

Australian Foreign Exchange to predict six different currencies against Australian 

dollar. 

One of the recent studies (ROUT M., 2013) uses the hybrid model combining an 

adaptive autoregressive moving average (ARMA) architecture and differential 

evolution (DE) based on training of its feed-forward and feed-back parameters. The 

results of the developed model are compared with other four competitive methods 

such as ARMA-particle swarm optimization (PSO), ARMA-ca t swarm 

optimization (CSO), ARMA-bacterial foraging optimization (BFO) and ARMA-

forward backward least mean square (FBLMS). The derivative based ARMA-

FBLMS forecasting model exhibits the least suitable prediction performance of the 

exchange rates. Compared to that, ARMA-DE exchange rate prediction model 

possesses superior short and long range prediction potentiality compared to others. 

Many studies are dealing with the prediction of USD/EUR, USD/YEN or 
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USD/RON. The originality of this paper lays in the prediction of EUR against other 

European currencies for the long-term time horizon (2014-2020).  

 

2. Methodology 

In this paper, there are models of time series of monthly exchange rates of the 

national currencies not including the common European currency, for the time 

period of 12/1998 to 12/2013. These currencies are of the Czech republic (CZK), 

Poland (PLN), Great Britain (GBP), Romania (RON), Sweden (SEK) and Hungary 

(HUF). The data were obtained from the ECB database and they contain values of 

the selling price of each currency, specifically the average value for each month at 

the foreign exchange market FOREX. In total, there are 180 observations in the 

time series. Countries that do not use Euro but have fixed exchange rate were not 

included in this prediction. This applies for Bulgaria (1EUR=1,95583BGN), 

Denmark (1EUR=7,46038DKK) and Lithuania (1EUR=3,4528LTL).  

To obtain the adequate ARIMA (p, d, q) model, the series stationarity was tested 

by applying the ADF-Augmented Dickey-Fuller (DICKEY&FULLER, 1979) and 

PP-Phillips-Perron unit root tests (PHILLIPS P., 1988). ADF was performed for 

the scenario with a constant, without a constant and with a trend. The most suitable 

appears to be the model with a constant, the results of which are shown below in 

the table no. 1 for different currencies. The results of these tests regarding non-

stationarity of the indices are the same, namely the series EUR/RON, EUR/SEK, 

EUR/GBP, EUR/HUF are non-stationary (the null hypothesis of the unit root 

existence cannot be rejected, i.e. it is not a stationary time series). 

 
Table 1. Augmented Dickey-Fuller (ADF) test with a constant for the currencies 

CZK/SEK/GBP/PLN/HUF/RON  

Results/currency CZK SEK GBP PLN HUF RON 

Estimated value γ -0,001 -0,03 -0,01 -0,06 -0,01 0,003 

Test statistics: t -0,36 -1,81 -0,75 -2,82 -0,22 0,96 

Asymptotic p-value 0,56 0,38 0,39 0,06 0,61 0,91 

Source: author (SW Gretl) 

 

If we do not reject the null hypothesis and the given series is non-stationary, it is 

necessary to proceed to its transformation, as the Box Jenkins (AR, MA, ARMA or 

ARIMA) models are based on the time series stationarity, in the form of 
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Yn = a1Yn-1 + a2Yn-2 +….+ ap Yn-p – b1n-1 - b2n-2 - ….bqn-q +n   (1) 

(1-a1L-a2L2 - …apLp)Yn = (1-b1L- … - bqLq)n    (2) 

(L)Yn = (L)n       (3) 

 

Where p is the order of the autoregressive part, while q is the order of the moving 

average part, and n represents the white noise. 

Validation of ARMA (p,q) models is based on minimizing the AIC (Akaik’s 

information criterion) and BIC (Schwarz’s information criterion) criteria, as well as 

on the verification of the correlation of the error terms of the model and finally on 

measuring the divergence from the normality of these values. If it is needed for the 

time series to have one differential operation to achieve stationarity, it is a I(1) 

series. Time series is I(n) in case it is to be differentiated for n times to achieve 

stationarity. Therefore, ARIMA (p,d,q) models are used for the non-stationary time 

series, specifically the autoregressive integrated average models, where d is the 

order of differentiation for the series to become stationary. Therefore the ARIMA 

(p,d,q) model may be rewritten as follows: 

(L) (1- L)d Yn = (L)n      (4) 

 

where L is the lag operator and the order of differentiation is equal to: 

dYn = (1- L)d Yn       (5) 

The identification of modeling the conditional mean value is based on the analysis 

of estimated autocorrelation and partial autocorrelation function (ACF, PACF). 

These estimations may be strongly inter-correlated, it is therefore recommended 

not to insist on unambiguous determination of the model order, but to try more 

models. We must not forget to carry out the verification, which is based on 

retrospective review of the assumptions imposed on the random errors. Given that 

financial data are very often characterized by high volatility, it is necessary to test 

the model for ARCH effect, i.e. presence of conditional heteroscedasticity. 

Regarding heteroscedasticity it is therefore a situation where the condition of finite 

and constant variance of random components is violated. The following model 

illustrates the conditional heteroscedasticity: 

(𝑙𝑛𝑋𝑡 − 𝑙𝑛𝑋𝑡−1)2 = 𝛼 + ρ (𝑙𝑛𝑋𝑡−1 − 𝑙𝑛𝑋𝑡−2)2 + 𝑢𝑡    (6) 

where Xt, Xt- represent values in the time series when time t is changed by one 

unit. The parameter 𝛼 is calculated with the use of OLS and 𝑢𝑡 is a random 

component. If the parameter ρ (regressive parameter) is equal to zero, we cannot 

talk about heteroscedasticity. 
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3. Results 
Based on the priori information about the behavior of the exchange rates, it may be 

concluded that the specification of the ARIMA (1,1,1) type is an adequate choice. 

To verify this estimation, we generated the correlograms ACF and PACF which for 

most of the analyzed currencies confirm the legitimacy of the identification of the 

data generating process with the use of ARIMA (1,1,1). The exception is Swedish 

crown and Hungarian forint. Based on comparing the information criteria (AIC, 

BIC),ARIMA (1,1,1) model without constant was identified for the Swedish 

currency (SEK) and ARIMA [(1,7),1,(1,7)] model for the Hungarian currency.  

Note. The model with a constant was also developed but compared to the 

significance of the p-value and by comparing the information criteria, it seems 

optimal to exclude the constant. For illustration, two ACF and PACF correlograms 

for the first difference for the Romanian Leu and Hungarian forint are shown 

below. 
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Figure 1. ACF and PACF correlograms for the first difference (RON, HUF) 

Source: Author (SW Gretl) 

CZK coefficient direct. error z p-value 

phi_1 0,283049 0,0734204 3,855 0,0001*** 

theta_1 0,850331 0,0606456 14,02 1,15E-44*** 

SEK coefficient direct. error z p-value 

phi_1 -0,527872 0,101123 -5,22   1,80e-07 *** 

theta_1 0,850349 0,0606514 14,02 1,15e-44 *** 

GBP coefficient direct. error z p-value 

phi_1 0,186398 0,0736146 2,532 0,0113*** 

theta_1 -1 0,0233473 -42,83 0** 

PLN coefficient direct. error z p-value 

phi_1 0,391535 0,0691388 5,663 0,0000000149*** 

theta_1 -1 0,0148063 -67,54 0*** 

HUF coefficient direct. error z p-value 

phi_1 0,342549 0,0850299 4,029 0,0000561*** 

phi_7 -0,21342 0,0702948 -3,036 0,0024*** 

theta_1 -1,09445 0,0527216 -20,76 1,02E-95*** 
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theta_7 0,101755 0,0563949 1,804 0,0712* 

RON coefficient direct. error z p-value 

phi_1 0,346849 0,0752846 4,607 0,00000408*** 

theta_1 -0,972696 0,0248644 -39,12 0*** 

Figure 2. The estimation of the ARIMA for exchange rates with the use of 180 

observations for the time period of 1.1999 – 31.12.1999 – 31.12.2013 

Source: own calculations 

Note. const = constant generated by SW Gretl, phi_1 = regressive coef. of AR processes at 

the 1. delay, theta_1: regressive coef. of MA processes at the 1. delay, z = test statistics. 

 

From the table, we can conclude that parameters of AR member as well as of MA 

member are statistically significant at least on the 5 % level for all examined 

currencies. Then we tested the model for autocorrelation (H0: There is no 

autocorrelation in the model, H1: There is autocorrelation in the model). The result 

is the rejection of H1 in favor of null hypothesis, i.e. that there is no autocorrelation 

in the model, thus the chosen ARIMA (1,1,1) specification is adequate (eventually 

for HUF ARIMA [(1,7),1,(1,7)] model).  

This is followed by testing the stationarity in the data generating process and 

finding, whether the model is invertible. This verification is based on discovering 

the absolute values of AR and MA roots.  

 CZK SEK GBP PLN HUF RON 

AR: Root 1 – abs. value 3,533 -1,8949 5,3649 2,5541 1,2963 2,8831 

MA: Root 1 – absolute value 1,023 -1,176 1,001 1,005 1,0219 1,0281 

Figure 3. Outputs of AR and MA roots 

Source: author 

Note. Hungary: absolute value of other six roots (in AR and MA) was higher than one. 

The absolute value of all roots is higher than one, i.e. the model is stationary and 

invertible. Based on these results, we developed the prediction of exchange rates up 

to 2020, which is shown on the following pictures.  
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Figure 2. Prediction of exchange rates with the use of ARIMA model (RON, SEK, 

HUF, CZK, GBP, PLN) 

Source: Author (SW Gretl) 

Note: blue line = prediction, green line = 95% interval  
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The prediction shows decreasing trend of the Czech crown. Throughout the years, 

it should come to the evaluation of CZK against Euro but only slowly as according 

to the prediction the average exchange rate should be 24,52CZK/EUR in 2020. 

There is a slight decline also for the Swedish crown. For other currencies, the trend 

is rising or almost constant (Polish currency). From 2014 to 2020, Romania should 

register a rapid development of its currency. This rapid depreciation of the 

exchange rate (from 4,57RON/EUR in 2014 to 5,87RON/EUR in 2020) could 

cause pressure to increase the export by which the balance of payment deficit could 

be partly improved as Romania is currently overloaded with import. 

Results of these models were subsequently verified with the use of the select 

autocorrelation function of standardized residues which verified their non-

correlation. The final part of the verification was to test the normality of 

standardized residues and then, with the use of ARCH test, we determined, whether 

these residues have constant variance, i.e. whether they are conditionally 

homoscedastic. We tested the null hypothesis, i.e. that there is no ARCH effect 

present in the residues. If p-value is higher that the importance level of 0,05, we 

accept this hypothesis.  

Currency  p-value Result of the testing (presence of ARCH effect) 

CZK 0,0348396 Residues are conditionally heteroscedastic 

SEK 1,32E-05 Residues are conditionally heteroscedastic 

GBP 0,00197651 Residues are conditionally heteroscedastic 

PLN 0,11284 Residues are conditionally homoscedastic 

HUF 0,098173 Residues are conditionally homoscedastic 

RON 0,312715 Residues are conditionally homoscedastic 

Figure 4.  Detection of ARCH effect 

Source: author 

From the above shown table follows that heteroscedasticity was found at three 

currencies (i.e. presence of ARCH effect). Because the variances of the random 

components are not equal, the OLS method has not the optimal properties in this 

form of generalized linear regressive model, specifically it does not provide 

substantial estimations, however, these estimations are still impartial and may be 

used for further research. Polish, Hungarian and Romanian currency shows 

constant variance of the residues (homoscedasticity). 

 

4. Conclusion 

In this study, exchange rates of the six European currencies were predicted with the 

use of ARIMA (1,1,1) or with the use of ARIMA [(1,7),1,(1,7)]. The results are 

different for each selected currency – according to the prediction there will be 
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appreciation as well as depreciation of the currency against Euro. It is however 

necessary to consider the limitations of using the ARIMA models which presented 

certain problems in estimating and validating the model and which are more 

effective in rendering the medium-term value (for several months). This long-term 

prediction should primarily show the future trend of the development of currencies 

exchange rates and at the same time identify the optimal model of the Box Jenkins 

models for predicting the European exchange rates. Both of these conditions were 

fulfilled. 
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Forecast Intervals for Inflation Rate 

and Unemployment Rate in Romania 

 

Mihaela Simionescu1 

 

Abstract: The main objective of this research is to construct forecast intervals for inflation and 

unemployment rate in Romania. Two types of techniques were employed: bootstrap technique (t-

percentile method) and historical error technique (root mean square error method- RMSE). The 

forecast intervals based on point forecasts of National Bank of Romania (NBR) include more actual 

values of quarterly inflation rate during Q1:2011-Q4:2013. The proposed prediction intervals for 

quarterly inflation and unemployment rate contain the registered values. Considering as constant the 

error from previous year, we will build forecast intervals for annual inflation and unemployment rate 

based predictions provided by two anonymous experts on the horizon 2004-2015.All the forecast 

intervals for inflation rate based on first expert expectations included the actual values during 2004-

2013. 

Keywords: forecast intervals; point prediction; inflation rate; unemployment rate 

JEL Classification: C51; C53 

 

1 Introduction  

The point forecasts did not provide any information regarding the degree of 

accuracy. On the other hand, the forecast intervals allow the evaluation of future 

uncertainty and the comparison between the forecasting methods, indicating the 

strategies to be applied for desired results.   

The main aim of this paper is to construct forecast intervals for inflation and 

unemployment rate in Romania. Excepting some forecast intervals proposed by 

(Bratu, 2012, p. 146), in Romania prediction intervals for macroeconomic variables 

were not proposed. The most frequently used method for constructing forecast 

intervals is the historical errors method that supposes keeping constant an accuracy 

measure. The bootstrap method is also used when the distribution type of the 

sample is unknown.  
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A grid bootstrap was used to compute the median without bias by (Gospodinov, 

2002, p. 86), but the evolution of the events should be characterized by a high 

persistence. The main disadvantage is the high volume of computations.  (Guan, 

2003, p. 79). 

The sieve bootstrap technique allows for consistent estimators of conditional 

repartition in the case of non-parametric prediction intervals (Alonso, Pena and 

Romo, 2003, p. 182). In Romania there is a strong correlation between inflation 

and money, making us to believe if the money earning went too far (Croitoru, 

2013, p. 6). Therefore, the inflation forecasting should be taken under control. 

In this paper we used as forecasting methods to build prediction intervals the 

historical errors method and the bootstrap technique. 

It would be necessary to continue the research and build some Bayesian forecast 

intervals and to compare the results with those obtained using usual methods. The 

paper continues with the methodological framework, providing different types of 

quarterly and annual forecast intervals for the two variables. Moreover, the 

intervals are constructed using as point forecasts the anticipations of two 

forecasters during 2004-2015. It seems that first expert generated better inflation 

forecast intervals than the second one. 

 

2. Methodology 

The prediction interval that uses the historical errors method considers that errors 

follow a normal distribution of zero mean and  standard deviation that equals the 

root mean squared error (RMSE) of the histrorical forecasts. Given a certain level 

of significance (α), the forecast intervals are built as it follows: 

                                                    (1) 

 the point prediction of the variable Y given at time t for the period (t+k)  

- quantile α/2 of  normal distribution of zero mean and standard deviation 

equalled to1 

The  following multiple linear regression is considered: 

          (1) 

Y- vector (length: nx1) 

X- matrix (length: nxp) 
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- vector of parameters (length: px1) 

u- vector of error terms (length: nx1) 

- residuals ( =Y-X ) 

- parameter estimator ( ) 

The form of bootstrap model is: 

         (2) 

Y*- vector (length: nx1) 

X*- matrix (lenth: nxp) 

- parameter estimator ( ) 

random element  

The selected sample is: . The random term from theoretical bootstrap 

process uses modified residuals: 

       (3) 

The theoretical process is computed as: 

        (4) 

i=1,2,..,n 

b-order of iteration 

- resampled from  

Given the random variable  ( ), the interval for  considers that  has 

Student distribution (n-p degrees of freedom). For a level of confidence of (1-2 ) 

the interval is: 

      (5) 

                              (6) 

The percentile-t bootstrap method is based on estimation. We build a bootstrap 

table, the values of   are:  
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         (7) 

The percentile-t forecast interval for   is: 

      (8) 

For the observation with number f of the exogenous variable X, the prediction is 

calculated using the model (Y- dependent variable):  . Having a normal 

distribution of the errors and the confidence interval (1-2  the standard prediction 

interval is: 

     (9) 

A prediction interval for  is based on forecast error . The future 

value  

         (10) 

It is based on a retrieval of an empirical distribution of the modified residuals. For 

replication b, the prediction error is:   

        (11) 

       (12) 

The bootstrap forecast error is: 

        (13) 

Given the empirical distribution of  ( , the percentiles are employed to 

determine the bootstrap prediction intervals ( ). The 

percentile prediction interval is: 

       (14) 

For percentile-t prediction interval, standard deviation estimator ( ) is : 

       (15) 

       (16) 

The statistic  is determined:  
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         (17) 

The percentile-t prediction interval has the form: 

      (18) 

 

3. Forecast Intervals 

Using the quarter point forecasts and the prediction intervals provided by the 

National Bank of Romania, we built some forecast intervals based on historical 

errors methods by keeping constant the root mean square error (RMSE) of the 

previous 4 quarter. The horizon is 2011:Q1-2015:Q4.  

Table 1. Forecast intervals for the inflation rate predicted by National Bank of 

Romania (2011:Q1-2015:Q4) 

Quarter  Forecast interval Forecast interval- 

historical error 

method 

Point 

forecast 

Actual 

values 

 Lower 

limit 

Upper limit Lower 

limit 

Upper 

limit 

  

T1:2011 7.48 7.95 -2.96 17.96 7.5  1.013 

T2:2011 7.93 8.05 -0.73 16.59 7.93  1.005 

T3:2011 3.45 3.58 -1.69 8.59 3.45  0.990 

T4:2011 3.14 3.25 -0.99 7.27 3.14  1.012 

T1:2012 1.43 2.52 -3.01 7.81 2.40  1.010 

T2:2012 1.35 3.44 -5.02 9.10 2.04  1.002 

T3:2012 2.46 5.20 -3.40 14.06 5.33  1.022 

T4:2012 1.57 4.93 -4.42 14.32 4.95  1.009 

T1:2013 1.34 5.33 -3.78 14.16 5.19  1.003 

T2:2013 1.04 5.98 -2.91 14.69 5.89  1.003 

T3:2013 0.62 4.77 -4.04 11.06 3.51  0.988 

T4:2013 0.81 5.18 -2.18 9.20 3.51  1.006 

T1:2014 1.02 7.93 -1.24 6.60 2.68  

T2:2014 1.5 3.5 -1.14 6.70 2.78  

T3:2014 1.5 3.5 -0.84 7.00 3.08  

T4:2014 1.5 3.5 -0.73 7.11 3.19  

T1:2015 1.5 3.5 -1.72 6.12 2.2  

T2:2015 1.5 3.5 -2.12 5.72 1.8  
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T3:2015 1.5 3.5 -1.32 6.52 2.6  

T4:2015 1.5 3.5 -1.12 6.72 2.8  

Source: own computations 

In the period from 2011 to 2013 only two forecast intervals of NBR include the 

actual values of inflation rate. The prediction intervals based on historical RMSE 

contain all the actual values during 2011-2013. 

The variables with quarterly data that are used are: index of consumer prices that 

will be used in computing inflation rate, real exchange rate and unemployment rate 

on the period 2000:Q-2014:Q4. The quarterly forecasts will be made for 2011-

2014, after the aggregation of data for obtaining annual values. The Tramo/Seats 

method was applied to get seasonally adjusted data. The logarithm was applied for 

the index of consumer prices. The data in first difference was computed for 

unemployment rate and exchange rate (d_ur and d_er).  

The seasonally adjusted and stationarized index of consumer prices is denoted by 

log_ip. The following valid model was obtained:   

 (19) 

                                                (std. error=0,08)   (std. error=0,02) 

                                                (t-calc.=13.62)          (t-calc.=-11.24) 

According to Breusch-Godfrey test for the first lag, the errors are independent. The 

hypothesis of errors normal distrbution is checked using Jarque-Bera test and we 

do not have enought evidence to reject the normal repartition. According to White 

test, he errors are homoskedastic. The results of the application of these test are 

presented in Appendix 1.  

For the seasonally adjusted and first differentiated quarterly unemployment rate 

(ur) an autoregressive model of order 1 is built, for which the errors are 

independent, homoskedastic and they follow a normal repartition (Appendix 2).  

 (20) 

Table 2. Point forecasts and bootstraped forecast intervals using the linear regression 

model for inflation rate (%) (percentile-t method) (horizon: 2011:Q1-2015:Q4)  

Quarter  Point forecasts Forecast intervals for inflation 

rate 

Actual values 

  Intervals limits  

Q1:2011 1.0114 0.0245 1.9983  1.013 

Q2:2011 1.0088 0.0219 1.9957  1.005 

Q3:2011 1.0059 0.0190 1.9928  0.990 
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Q4:2011 1.0075 0.0206 1.9944  1.012 

Q1:2012 1.0044 0.0175 1.9913  1.010 

Q2:2012 1.0032 0.0163 1.9901  1.002 

Q3:2012 1.0012 0.0143 1.9881  1.022 

Q4:2012 1.0047 0.0178 1.9916  1.009 

Q1:2013 1.0035 0.0166 1.9904  1.003 

Q2:2013 1.0029 0.0160 1.9898  1.003 

Q3:2013 1.0031 0.0162 1.9900  0.988 

Q4:2013 1.0032 0.0163 1.9901  1.006 

Q3:2014 1.0034 0.0165 1.9903  

Q4:2014 1.0033 0.0164 1.9902  

Q3:2014 1.002 0.0151 1.9889  

Q4:2014 1.0021 0.0152 1.9890  

Q3:2015 1.002 0.0151 1.9889  

Q4:2015 1.0013 0.0144 1.9882  

Q3:2015 1.0012 0.0143 1.9881  

Q4:2015 1.001 0.0141 1.9879  

Source: authors’ computations 

As we can see in the table above, the inferior and superior limits of the bootstrap 

intrvals have ranges with low variations. The results are close of the desired 

monetary policy in Romania, but the intervals are too narrow and the registered 

inflation rate for inflation is located out of these intervals. The reasons for this fact 

are related to the underestimated point forecasts for inflation based on linear 

regression model. All the forecast intervala based on percentile-t method include 

the actual values of inflation rate. 

Table 3. Point forecasts and bootstraped forecast intervals using the linear regression 

model for unemployment rate (%) (percentile-t method) (horizon: 2011:Q1-2015:Q4) 

Quarter  Point forecasts Forecast intervals for 

inflation rate 

Actual values 

  Intervals limits  

Q1:2011 7.21 5.46 8.95  7.20 

Q2:2011 7.27 5.52 9.01  7.40 

Q3:2011 7.41 5.66 9.15  7.40 

Q4:2011 7.41 5.66 9.15  7.40 

Q1:2012 7.37 5.63 9.12  7.30 

Q2:2012 7.21 5.47 8.96  7.00 

Q3:2012 7.04 5.29 8.78  7.10 

Q4:2012 7.07 5.33 8.82  7.00 

Q1:2013 7.07 5.32 8.81  7.20 

Q2:2013 7.24 5.49 8.98  7.30 

Q3:2013 7.31 5.56 9.05  7.30 

Q4:2013 7.31 5.56 9.05  7.30 
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Q1:2014 7.33 5.59 9.07  7.20 

Q2:2014 7.4 5.66 9.14  7.20 

Q3:2014 7.41 5.67 9.15  

Q4:2014 7.43 5.69 9.17  

Q1:2015 7.45 5.71 9.19  

Q2:2015 7.45 5.71 9.19  

Q3:2015 7.5 5.76 9.24  

Q4:2015 7.53 5.79 9.27  

Source: authors’ computations 

Starting with 2013, the unemployment rate has a slow tendency of increase. The 

variations of range for forecast intervals for unemployment rate are rather small, 

because the differencies between predicted unemployment are low from a quarter 

to another. All the forecast intervals based on percentile-t method include the 

actual values of unemployment rate. 

Table 4. Point forecasts and forecast intervals for qurterly inflation rate and 

unemployment rate (%) based on historical error methods  (horizon: 2011:Q1-

2015:Q4) 

Quarter  Forecast intervals of 

inflation rate based on 

historical RMSE of the 

previous 4 quarters  

Forecast intervals of unemployment rate 

based on historical RMSE of the previous 

4 quarters 

 Intervals limits Intervals limits 

Q1:2011 -9.448 11.471 6.86 7.55 

Q2:2011 -7.655 9.673 6.93 7.60 

Q3:2011 -4.130 6.142 7.03 7.78 

Q4:2011 -3.121 5.136 6.92 7.89 

Q1:2012 -4.407 6.415 6.83 7.91 

Q2:2012 -6.057 8.063 6.65 7.77 

Q3:2012 -7.731 9.734 6.46 7.61 

Q4:2012 -8.365 10.375 6.58 7.57 

Q1:2013 -7.963 9.970 6.58 7.55 

Q2:2013 -7.799 9.805 6.79 7.68 

Q3:2013 -6.551 8.557 6.91 7.70 

Q4:2013 -4.687 6.694 6.95 7.66 

Q1:2014 -2.917 4.923 7.10 7.56 

Q2:2014 -2.917 4.923 7.09 7.71 

Q3:2014 -2.918 4.922 7.03 7.79 

Q4:2014 -2.919 4.920 7.00 7.86 

Q1:2015 -2.921 4.917 6.96 7.94 

Q2:2015 -2.923 4.915 7.05 7.67 

Q3:2015 -2.928 4.912 7.34 7.87 

Q4:2015 -2.929 4.911 7.56 7.96 

Source: authors’ computations 
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Forecasts of inflation and unemployment rate provided by this method seem 

reasonable,the lenght of intervals being rather big. However, if we go in time, these 

intervals become narrower. All the forecast intervala based on historical error 

method include the actual values of inflation and unemployment rate. 

Considering constant the error from previous year, we will build forecast intervals 

for inflation and unemployment rate based on two experts’ predictions on the 

horizon 2004-2015. Some point forecasts are provided by (Dobrescu, 2013, p. 10). 

Table 5. Prediction intervals for annual inflation rate (%) based on historical errors 

method (horizon: 2004-2015) 

Year  Forecast intervals based 

on first expert forecasts 

Forecast intervals based 

on second expert 

predictions 

Actual inflation 

rate 

2004 3.99 18.97 5.24 18.56 15.3 

2005 10.13  17.35 3.32 14.68 11.9 

2006 7.82 9.38 3.08 10.92 9 

2007 3.90 7.42 9.4 8.06 6.56 

2008 1.33  15.67 6.03 11.7 4.84 

2009 1.19 10.01 7.93 11.07 7.85 

2010 4.81  7.99 5.00  7.40 5.59 

2011 3.17 7.04 8.29 9.931 6.09 

2012 2.15  6.85 5.37 10.263 3.3 

2013 -3.19 12.93 -4.58 2.13 3.98 

2014 -3.194 4.806 -07.18 2.10  

2015 -3.628 5.638 -8.18 2.2201  

Source: authors’ computations 

The intervals range for inflation rate is extremly variable in the period 2004-2012. 

The range is larger during  2013-2015.  All the forecast intervals based on first 

expert anticipations include the actual values of inflation rate while only 5 out of 

10 intervals on the horizon 2004-2013 contain the second expert prognosis.  

Table 6.Forecast intervals for annual unemployment rate (%) based on historical 

errors method (horizon: 2004-2015) 

Year  Forecast intervals based 

on first expert forecasts 

Forecast intervals based 

on second expert 

predictions 

Actual 

unemployment rate 

2004 6.808 7.592 6.8240 9.1760 7.4 

2005 4.754  11.066 4.7640 11.0360 6.3 

2006 4.748  9.452 4.0760 11.5240 5.9 

2007 1.638  11.282 0.5440 14.6560 4 

2008 3.536 7.064 1.5200 13.2800 4.4 

2009 3.400 13.200 3.3040 13.4960 5.8 
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2010 6.636 10.164 7.2040 7.5960 7.5 

2011 6.604 7.812 6.3240 8.6760 6.9 

2012 4.748 9.452 4.2680 10.9320 5.9 

2013 3.136 6.664  3.4320 6.5680 7.3 

2014 5.836 9.364  5.4320 8.5680  

2015 5.945 9.567 5.4734 8.5834  

Source: authors’ computations 

In 2007 the highest range for prediction intervals was obtained for both experts. 9 

out of 10 forecast intervals based on first expert anticipations and the second one 

predictions include the actual values of inflation rate during 2004-2013. For the last 

year in the horizon both forecasters anticipated lower unemployment rates.  

 

4. Conclusion 

The forecast intervals are a way to reflect the uncertainty that affects the 

forecasting process. For inflation rate and unemployment rate point predictions 

forecast intervals were built for Romania, providing a better framework for 

establishing the decision making process. The annual inflation rate forecasts of the 

first expert anticipation generated precise prediction intervals when bootstrapping 

and historical errors methods are applied during 2004-2013. However, the intervals 

are quite large. A future direction of research would be the construction of forecast 

intervals using Bayesian method. 
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APPENDIX 1. Linear regression model for quarterly index of consumer 

prices 

 

Variable Coefficient Std. Error t-Statistic Prob. 

C 0.119341 0.008761 13.62264 0.0000 

Curs_schimb__SA -0.026202 0.002331 -11.24136 0.0000 

R-squared 0.700613 Mean dependent var 0.022474 

Adjusted R-squared 0.695068 S.D. dependent var 0.021395 

S.E. of regression 0.011814 Akaike info criterion -6.003922 

Sum squared resid 0.007537 Schwarz criterion -5.931588 

Log likelihood 170.1098 F-statistic 126.3683 

Durbin-Watson stat 1.032398 Prob(F-statistic) 0.000000 

 

White Heteroskedasticity Test: 

F-statistic 1.284795 Probability 0.285184 

Obs*R-squared 2.589492 Probability 0.273967 

 

Breusch-Godfrey Serial Correlation LM Test: 

F-statistic 6.08290 Probability 0.191 

Obs*R-squared 3.03713 Probability 0.305 
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Sample 2000:1 2013:4

Observations 56

Mean      -2.85E-17

Median  -0.000136

Maximum  0.024672

Minimum -0.025453

Std. Dev.   0.011707

Skewness  -0.028432

Kurtosis   2.567826

Jarque-Bera  0.443352

Probability  0.801175

 

 

APPENDIX 2. Autoregressive model for quarterly unemployment rate 

Variable Coefficient Std. Error t-Statistic Prob. 

C 0.005242 0.042195 0.124224 0.9016 

U(-1) 0.309934 0.131379 2.359076 0.0221 

R-squared 0.096677 Mean dependent var 0.009259 

Adjusted R-squared 0.079305 S.D. dependent var 0.322881 

S.E. of regression 0.309814 Akaike info criterion 0.530642 

Sum squared resid 4.991194 Schwarz criterion 0.604308 

Log likelihood -12.32734 F-statistic 5.565238 

Durbin-Watson stat 1.894308 Prob(F-statistic) 0.022112 

 

Breusch-Godfrey Serial Correlation LM Test: 

F-statistic 1.422747 Probability 0.238472 

Obs*R-squared 1.465554 Probability 0.226049 

 

White Heteroskedasticity Test: 

F-statistic 0.352616 Probability 0.704547 

Obs*R-squared 0.736532 Probability 0.691933 
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A Comparative Analysis of Some Results from Qp and R 

 

Alin Cristian Ioan1 

 

Abstract: The paper investigates whether a series of concepts and properties available in the real 

analysis remains valid for p-adic case. There are many similarities between R and Qp and also so 

many differences. First of all, R is an ordered field, which is not true for Qp. Secondly R is 

archimedean (that is the absolute valuation •  is archimedean) while Qp is not archimedean for any p 

prime. This means that R is a connected metric space while Qp is totally disconnected. This proves 

that there is no analogous notion of interval in Qp or a notion similar to the curve. These contrasts will 

cause the difference between the analysis p-adic and the real analysis. 

Keywords: p-adic; sequences; series; function 

JEL Classification: C02 

 

1 Introduction 

Let note Qp the field of p-adic numbers. Before we begin, we should note that there 

are many similarities between R and Qp and also so many differences. First of all, 

R is an ordered field, which is not true for Qp. Secondly R is archimedean (that is 

the absolute valuation •  is archimedean) while Qp is not archimedean for any p 

prime. This means that R is a connected metric space while Qp is totally 

disconnected. This proves that there is no analogous notion of interval in Qp or a 

notion similar to the curve. These contrasts will cause the difference between the 

analysis p-adic and the real analysis. 

 

2 Sequences and Series in Qp 

We begin by studying the basic properties of strings and series in Qp. The most 

important thing about Qp is that the field is a complete field, therefore every 
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Cauchy sequence is convergent. Naturally all the properties of the norm  on R 

are the same of the properties of the p-adic valuations (the property of being non-

archimedean being an additional property). 

As a result, many of the basic theorems that occur in the real analysis, taking place 

also in the p-adic analysis. One of the great benefits of the p-adic analysis is that it 

will bring generalizations to some real questions raised in the analysis (due to the 

property of p to be non-archimedean). 

Lemma 1 

A sequence (xn)Qp is a Cauchy sequence if and only if  |xn+1 – xn| = 0. 

Proof 

If m=n+r>n, we get | xm – xn| = | xn+r – xn+r-1 + xn+r-1 - xn+r-2 +...- xn|  max { | xn+r – 

xn+r-1 |, 

| xn+r-1 - xn+r-2 |,..., |xn+1 – xn| } this fact being true because p is non-archimedean. 

Now for  r  N* and  > 0  N  N* such that |xm – xn| = |xn+r – xn|  max { | xn+r 

– xn+r-1 |, | xn+r-1 - xn+r-2 |, ...,|xn+1 – xn| } <   n, m  N. N is that natural number 

which  n  N we have |xn+1 – xn | < . Therefore, the sequence (xn)  Qp is 

Cauchy so convergent. 

The theory of sequences and their convergence is therefore similar with that on R 

except lemma above. 

Proposition 2 

Let  (an )  Qp a convergent sequence. Then we have one of two statements: either 

lim |an| = 0, or there exists an integer M such that |an| = |aM|  n  M. In other 

words, the absolute value of the sequence converges to zero or it becomes constant 

after a rank on. 

Proof 

Suppose that lim |an|  0    > 0 such that  N1  N*,  n  N1 with |an|  . So  

a number c >  > 0 with |an|  c > ,  n  N1. On the other hand  N2 integer for 

which  n,m  N2  | an - am| < c. We want both conditions occur so fix   > 0 N 

= max { N1, N2}. Now  n,m  N  | an - am| < max { |an|, |am| } from where we get 

|an| = |am| after non-archimedean property (that is, in the space Qp all triangles are 

isosceles). 

Also, for series the classical theory remains valid. For example, the following 

statements are true: 
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Proposition 3 

Let (an)  Qp. The absolute convergence of sequence implies its convergence, ie if 

a series of absolute values | converges in R then the series  converges in 

Qp.  

Proof 

The series  converges in Qp  lim |an| = 0. But a necessary condition for 

absolute series to converges is that lim |an| = 0. 

The next result is a strong result in real analysis, but in p-adic context, the previous 

lemma becomes an important tool to determine whether a series of p-adic numbers 

converges in Qp namely: 

Corollary 4 

An infinite series  with (an)  Qp is convergent   an = 0. In this 

case we also have |  |  |. 

Proof 

A series converges only when the sequence of partial sums converges. Now take 

the difference between the n-th partial sum and the (n-1)-th. By Lemma we get that 

this difference tends to 0 as we wanted. Conversely we have the sequence of partial 

sums is Cauchy therefore convergent. If =0 we have nothing to prove. 

Otherwise, for any partial sum, we have |  an|. Since  

an = 0    > 0  N  N* such that |an| <   n > N = N. Let  = 

an|. Thus we have an| = an|. How an| does 

not depend on N for N   we get |  |  |, that is the 

conclusion. 

The reciprocal question related to when a series is convergent in R implies that its 

general term tends to zero is not necessarily true. As a counterexample we have the 

harmonic series which not converges in R. 

Therefore, it is much easier to establish convergence of the infinite series in p-adic 

context than in R. This seems to express that the theory of series in Qp is much 

simpler than in R. 

Now we shall consider a “double string” (bij)  Qp asking what happens to the two 

series considered after a summing with i and after j or viceversa. For this, it is 

necessary that, as example, bij 0 when one of the indices is fixed and the other 

goes to infinity (otherwise obvious series will not converges). We shall say that 
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 = 0 uniformly in j if  > 0 we can find an integer N which does not 

depend on j such that i  N   | bij | <  j. In other words, the sequence (bij) 

tends to 0 when i  , the convergence coming from the same rank for all j. First 

we prove the following lemma: 

Lemma 5 

Let (bij)  Qp and assume that: 

1 )  i,  bij = 0 

2)  bij = 0 uniformly in j 

Then for any real number  > 0  an integer N which depends only of  such that if 

max(i, j)  N  |bij| < . 

Proof 

Let  > 0 fixed. The second condition says that we can choose N0  N*, which 

depends on  but not of j such that |bij| <  if i  N0. The first condition is weaker (it 

says basically that  i we can find N1(i )  N*, “the notation suggesting that the 

whole depends on i”) such that if  j  N1(i ) we have |bij| < . Now we take N = N() 

= max (N0, N1(0), N1(1), …, N1(N0 – 1)). The choice of N was done so that if max 

(i,j )  N then i  N0 when |bij| <  regardless of j or if i < N0  j  N and i  { 

0,1,2,…, N0 – 1} therefore j  N1(i ), when we have |bij| < . 

Proposition 6 

Let (bij)  Qp and assume that: 

1)  i,  bij = 0 

2)  bij = 0 uniformly in j 

Then the series  and  converges and their sums are 

equal. 

Proof 

From the previous lemma we know that for a given  > 0 we can choose N such 

that for max (i, j)  N  |bij| < . In particular for  i, when j   or viceversa 

then the inner sums  and  converges (the first sum for each i and 

the second for each j). More, for i  N we have | |  | < . 



ACTA UNIVERSITATIS DANUBIUS                                                     Vol 10, no 5, 2014 

 

 56 

Similarly for any j  N we have | | < . In particular, we note that 

 = 0 and  = 0 therefore both series converges. It remains 

to show that the sums of the two double series are equal. We will continue to use N 

and  as above so that the condition |bij| <   i or j  N holds. We will often use 

the ultrametric inequality: |x + y|  max{ |x|, |y|} applied even at the level of series 

as we have seen in the last corollary. We see first |   

| = |   . Now for j  N+1 we 

shall have |bij| <   i. With ultrametric inequality it remains that | | <  

 i and, using again the ultrametric inequality we have that | | < 

. Similarly, we obtain |  < . So, again applying this inequality 

we have that: |   | < . Reversing now i with j we 

get a similar inequality that is |   | < , then finally 

|   | < . But how  was arbitrarily fixed the double 

series are equal. 

What basically says this proposition is that if the double sequence {bij} converges 

to 0 in a uniform way, then the double sum after i and j can be taken in any order to 

give the same answer. 

Now if a =  and b = are two convergent series, then the series + bn 

is convergent and has the sum a + b. Indeed, the first sum is convergent   an 

= 0 and so the second if  bn = 0. In conclusion,  an + bn = 0, which is 

enough to say that the series + bn converges. Now, noting with c the sum of 

the series we have that  =  +  and passing to the 

limit with n   we have that c = a + b. 

A second problem is related in some way to the top as follows: if a =  and b = 

 are two convergent series, taking cn = bn-k then the series  is 

convergent and its sum is ab. 

Let the partial sum of order n of a and the partial sum of order n of b that is sn = 

 and tn = . Now sntn = . As above, we have:  an 

= 0 and  bn = 0. Computing   -  for n  N. 

In short, this expression is written sntn - cn - bl = 0 where l and k go 
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through the set of numbers 0,...,n. Finally, we have: sntn – cn - cn-1 - cn-2 +...- c0 – cn+1 

-... – c2n = 0 ie passing to the limit with n   we get ab =  that is c = ab. 

 

3 Functions, Continuity, Differentiability in Qp 

The basic idea on the functions and continuity remains unchanged by the passage 

of real numbers to p-adic numbers because ultimately they depend on the metric 

structure. Not be able to work with intervals (nay nor related with nontrivial 

connected sets), so that our functions will be defined on disks (closed-open). We 

shall write B(a,r) for open sets of center a and radius r> 0 and (a,r) for the closed 

sets of center and radius r. 

Definition 7 

Let U  Qp be an open set. A function f: U  Qp is called continous in a  U if  

 > 0  > 0 such that  x  U with the property | x – a| <   | f(x) – f(a)| < . 

The base results on continuity are true in all metric spaces and therefore also in the 

p-adic fields. For example, if U is a compact set (and remember that Qp is both 

open and compact so a subset included in it can have these properties) and f is 

continuous at any point in U then f is uniformly continuous. Automaticaly, the 

Darboux property to carry an interval within an interval is true since the intervals in 

Qp are identified with points. In the general context, the Darboux property says that 

a continuous function defined on a metric space carry a connected set into another 

connected set. 

Now, if U = Zp then for any a  Zp,   > 0,  n  N with  x  Zp such that | x – 

a | < , we have | f(x) – f(a)| < . However  =  for m  Z. For m = 0 we have 

that f(x) – f(a)  Zp that is f(x) is in one of the neighbourhoods (closed-open) of 

f(a) ie f carry a local connected set into a local connected set. 

Derivatives are perhaps more interesting from the fact that there is a lower analogy 

with the classical real case. It will make sense to define derivatives of functions f: 

Qp  Qp in the usual way, namely: 

Definition 8 

Let U  Qp be an open set and let f: U  Qp a function. We say that f is 

differentiable in xU if  the limit f ‘(x) = . If f ‘ (x) exists for 
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any x  U we shall say that f is differentiable on U and we write: f ‘: U  Qp for 

the function x  f ‘ (x). 

Remark 

Up to a certain point, the derivative of a function with values in Qp behaves as if 

real, that is it can be shown that a differentiable function is continuous as shown in 

R or C. 

It is natural to ask what is the role of the derivative of a function in the p-adic case. 

But if we consider that the mean value theorem states for a and b real data in the 

domain of definition of a differentiable function (while continuing)   between a 

and b such that f (b) - f (a ) = f '() (b - a), is not working in the p-adic case, 

because in fact we have not the relation of “being between” because Qp is not an 

ordered field. But this slight inconvenience can be simply remedied if we think that 

in R we can define the relation “being between” saying that  is between a and b if 

we have =at+b(1-t) for 0  t  1. Nearly the same happens in the complex case. 

What we can now express through the mean value theorem in the p-adic case? We 

ask if there the statement holds: if we have a function f defined on Qp, 

differentiable and continuous on Qp then for any two numbers a and b in Qp    

Qp of the form: =at+b(1-t) for t such that |t|  1, for which f(b) – f(a)=f ‘ () (b – 

a). We shall show that the mean value theorem for p-adic case is false. 

Proof 

Let f(x) = xp – x, a = 0, b = 1. We have f ‘ (x) = pxp-1 – 1 and f(a) = f(b) = 0. If the 

statement is true, it exists   Qp of the form  = at + b(1 - t) = 1 – t with t  Zp 

such that pp-1 – 1 = 0. But from here and   Zp and from pp-1 – 1 = 0  0  1 + 

p Zp - contradiction. 
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