ACTA UNIVERSITATIS DANUBIUS

Vol 18, no 1, 2022

Acta

Interconnections between Social and Economic Indicators in the Context of EU Resilience

Alina Georgeta Ailincă¹

Abstract: The COVID 19 pandemic has once again exposed a number of important risks and problems for the world's economies. Although the present analyzes of the literature are more and more often aggregated between fields, emphasizing the capacity of digitalization and international relations to improve the transition to the circular economy, resilience speaks not only of positive aspects but also of vulnerabilities. Thus, the article deals with the link between vulnerabilities and capacities of the socio-economic domain at EU27 level. The study uses Eurostat data for the period 2011-2020, systematized in the panel form. The results once again demonstrate the need to strengthen public support for health and education, for research and development, in order to reduce socio-economic vulnerabilities at EU27 level, demonstrating the need to correlate policy efforts with results.

Keywords: Resilience; social and economic dimension, econometric model, interrelations

JEL Classification: A14; B23; H50

1. Introduction

Recent international and European policy guidelines are increasingly talking about an ecologically sustainable world, in which technology plays an important role and society aims to become more equitable. The European Union aims to become the first climate-neutral continent by 2050. Even if it is the first or last continent to succeed in this endeavor, the entire planet must understand the need for a coordinated, common effort. At the same time, the effort must be proportional with economic, political, social and technological power of each continent of the world.

¹ 3rd Degree scientific researcher from Centre for Financial and Monetary Research "Victor Slăvescu" of "Costin C. Kiriţescu" National Institute for Economic Research, Romanian Academy, Romania, Address: Calea Victoriei 125, Sector 1, Code 010071, Bucharest, ROMANIA, Corresponding author: alinageorgetaailinca@gmail.com.

Beyond the human losses and the medical and economic sequels left by the COVID-19 pandemic, socially and educationally, children, women, people with disabilities, people at risk of poverty or with serious illness were the social categories most affected by the pandemic.

According to Eurostat, the EU27 unemployment rate rose from 6.7% in 2019 to 7.1% in 2020, and the real gross disposable income of households per capita fell from 107.69 million units of national currency (index = 2008) to 107.32. Thus, although affected, the economic and social resilience versus to the challenges of EU countries has been relatively good, compared to other parts of the world (e.g. Africa, some part of Asia, South America etc.).

In this context, seen as "the ability not only to stand and cope with challenges but also to undergo transitions in a sustainable, fair, and democratic manner" (European Commission, 2020 Strategic Foresight Report Charting the course towards a more resilient Europe), resilience can contribute to the achievement of EU sustainable development goals, through the multiple facets or dimensions it addresses (e.g. the social and economic dimension, the geopolitical dimension, the green dimension and the digital dimension). Therefore, this article does not seek to pursue the multidimensionality of the concept of resilience, but focuses on a number of indicators that capture the social and economic dimension of the EU27. Thus, the article starts from the attempt to understand the extent to which some of the economic and social indicators describing socio-economic vulnerabilities can be explained by the evolution of economic and social indicators describing capabilities.

2. Description of the Problem in the Context of the Literature Review

The socio-economic framework of the population of the world's countries had been more carefully analyzed in recent decades (Hsing, 2005; Goldthorpe, 2007; Rose & Harrison, 2010 etc.), although valuable research in this regard has been started before in the past, regarding the sustainability and the well-being, prosperity or wealth of a nation (Ayres, 1978; Pearce et al., 1990, Pezzey, 1992; Max-Neef, 1995, etc.). The need to incorporate more socio-ecological meaning than a classic GDP, however, was manifested by highlighting and measuring another type of GDP (Daly & Cobb, 1989; Asheim, 2000; Hanley, 2000, Talberth, Cobb & Slattery, 2006; Krueger et al. 2008; Stiglitz et al., 2009 etc.).

For example, Stiglitz, Sen, Fitoussi 2009 Report mentioned there is a great need for measurement system to shift emphasis from measuring economic production to measuring people's well-being in the context of sustainability.

More exactly, the Report accentuate that well-being is important because there appears to be an increasing gap between the information contained in aggregate GDP

data and what counts for common people's well-being, mentioning that there are several dimensions to well-being and the measurement should be started with material well-being or living standards. The dimensions analyzed in the above report were: Material living standards (income, consumption and wealth); Education; Health; Personal activities including work; Social connections and relationships; Political voice and governance; Environment; Insecurity, of an economic as well as a physical nature.

Also, in order to measuring people's wellbeing beyond GDP, as a multidisciplinary picture on several dimensions (green, digital, geopolitical, socio-economic) the EU Resilience Dashboards tries to give a general holistic image, been conceived on a selection of quantitative indicators.

The indicators were structured in vulnerabilities and capacities of all four dimensions, in order to better cope with the challenges of COVID-19 crisis. Thus, in the European Commission 2021 Resilience Dashboards, considering the vulnerabilities and capacities of the social and economic dimension there were treated the following aspects: - inequalities and social impact of transitions, - health, education and work and - economic and financial stability and sustainability. But the Resilience Dashboards concentrates on across-dimension linkages and correlations between domains and streamlined in terms of their overall balance across areas, and between vulnerabilities and capacities.

At the same time, there are calculated the synthetic indices, which aggregate the relative situation of the Members States and the EU across all considered indicators. A higher capacity index indicates higher (relative) capacities, while a higher vulnerability index shows higher (relative) vulnerabilities. However, the explaining of the causal link and homogeneity at the field level seems to be quite precarious. Therefore, although it is the starting point for this article, the article focuses exclusively on better understanding and explanation of the conduct of some socio-economic domain indicators.

3. Methodology

Therefore, given the importance of the connection between resilience indicators, this study aims to demonstrate the connection between a series of indicators of the socioeconomic domain, seen as vulnerabilities and capacities indicators such as: At-riskof-poverty rate by sex (Arpr), Income quintile share ratio (S80/S20) by sex (IqsrS80/S20), Gender employment gap (Geg), Old-age-dependency ratio (Oadr), General government gross debt (Gggd), General government expenditure by function - Education (COFOG) (Ggee), General government expenditure by function - Health (COFOG) (Ggeh), Tertiary educational attainment by sex, age group 30-34 (Tea), Life expectancy at birth by sex (Leb), Employment rate by sex, age group 2064 (Emplr), Gross domestic expenditure on R&D (GERD) (GdeR&D), General government gross fixed capital formation (Gggfcf). In summary, the result of the analyzed indicators is presented below:

Area of action	Indicator	Measurement unit	Period
6	At-risk-of-poverty rate by sex	%	2011-2020
itie	Income quintile share ratio (S80/S20) by sex	ratio	2011-2020
Vulnerabilities	Gender employment gap	% of total population	2011-2020
/ulr	Old-age-dependency ratio	ratio	2011-2020
-	General government gross debt	% of GDP	2011-2020
	General government expenditure by function - education	% of GDP	2011-2020
	General government expenditure by function -health	% of GDP	2011-2020
S	Tertiary educational attainment by sex, age group 30-34	%	2011-2020
citie	Life expectancy at birth by sex	Year	2011-2020
Capacities	Employment rate by sex, age group 20-64	% of total population	2011-2020
	Gross domestic expenditure on R&D (GERD)	% of GDP	2011-2020
	General government gross fixed capital formation	% of GDP	2011-2020

Table 1. Indicators and the Period of Analysis for the Social and Economic Domain

Source: author's selection. Eurostat data base

The starting hypotheses are those in which the indicators that describe the socioeconomic vulnerabilities are conditioned by the indicators that describe the capabilities of the same domain.

In order to validate these hypotheses described above, it will be used a panel data regression models showed below. The least square (LS) method was performed to test the statistical hypotheses. Eurostat database it has been used for the period 2011-2020.

Thus, in this article the descriptive statistics of the model is analyzed, a Pearson correlation matrix is made, a ADF test is performed, a series of regression equations are performed that connects each vulnerability socio-economic indicator with the capacities socio-economic indicators selected, in order to confirm or to reject the hypotheses. A Johansen Cointegration test and a Granger causality test for the relationship between vulnerabilities and capacities of socio-economic domain of EU27.

First, we proceed with a statistical description of the indicators used in regression model (e.g. mean, median, maximum, minimum, and standard deviation— see Table no. 2). The values of the mean and the median of the variables of the model reveal how close the data is to normal distribution. It can be concluded, that the mean and median values are close to one other, thus we could say that the data follows a normal distribution.

	ARPR	IQSRS80_S20	GEG	OADR	GGGD	GGEE	GGEH	EMPLR	GDER_D	LEB	GGGFCF	TEA
Mean	16.64259	4.888370	10.53704	27.62667	69.02593	4.994074	6.198066	70.73963	1.620481	79.77481	3.595556	40.23444
Median	16.10000	4.520000	9.350000	28.10000	62.00000	5.000000	6.300000	71.35000	1.325000	81.10000	3.600000	42.00000
Maximum	25.40000	8.320000	35.20000	36.40000	206.3000	7.100000	9.200000	82.40000	3.620000	84.00000	6.600000	62.20000
Minimum	8.600000	3.030000	0.600000	17.20000	6.200000	2.800000	2.500000	52.90000	0.380000	73.60000	1.500000	20.30000
Std. Dev.	3.808560	1.174552	5.716288	4.218726	38.57889	0.938277	1.441038	6.176098	0.886432	2.845193	1.063932	9.681018
Skewness	0.220901	0.732104	1.026562	-0.475770	0.968878	0.025828	-0.330026	-0.450513	0.573024	-0.688954	0.429563	-0.075187
Kurtosis	2.146950	2.629887	4.470811	2.692312	3.889580	2.452662	2.337428	2.648175	2.068787	2.065925	2.773208	2.150392
Jarque-Bera	10.38244	25.65998	71.75926	11.25114	51.14534	3.400286	9.840054	10.52583	24.53159	31.17516	8.882237	8.375016
Probability	0.005565	0.000003	0.000000	0.003605	0.000000	0.182657	0.007299	0.005180	0.000005	0.000000	0.011783	0.015184
Sum	4493.500	1319.860	2845.000	7459.200	18637.00	1348.400	1673.478	19099.70	437.5300	21539.20	970.8000	10863.30
Sum Sq. Dev.	3901.880	371.1053	8789.830	4787.568	400360.9	236.8179	558.6028	10260.79	211.3700	2177.589	304.4947	25211.25
Observations	270	270	270	270	270	270	270	270	270	270	270	270

Table 2. Descriptive Statistics of the Model

Source: Author's processing in EViews 11; Eurostat data

4. Results Obtained

Pearson correlation matrix is usually used for identifying the strength and the direction of a relation, evaluating whether there is a linear relationship among the pairs of variables in the population.

If we look at the correlation matrix (see Table 3), almost all indicators that describe vulnerabilities are positively correlated with each other, and almost all indicators that describe capabilities are also positively correlated with each other. At the same time, the indicators that describe the vulnerabilities are negatively correlated with those that describe the capacities, with small exceptions regarding Oadr and Gggd, obesity rates among children being practically stimulated by the good evolution of the indicators of socio-economic capabilities. Of the indicators that describe socio-economic vulnerabilities, only Arpr and IqsrS80/S20 are positively and strongly correlated (over 70%), therefore the risk of poverty and income inequality are mutually reinforcing at the level of EU27 countries. Regarding the indicators that describe the capacities, among them, the most significant links have the government expenditures for education (Ggee) and health (Ggeh) with those for research and development (GdeR&D). Also, the Employment rate (Emplr) has a significant positive correlation with GdeR&D.

Looking at the indicators that describe the vulnerabilities in relation to those that describe capacities, only the: Arpr with Ggeh, Arpr with GdeR&D, IqsrS80/S20 with GdeR&D, Gggd with Emplr and Gggd with Gggfcf have a correlation value of over 50%.

	Arpr	lqsr\$80/\$20	Geg	Oadr	Gggd	Ggee	Ggeh	Теа	Leb	Emplr	GdeR&D	Gggfcf
Arpr	1											
lqsrS80/S20	0,918	1										
Geg	0,050	-0,009	1									
Oadr	0,242	0,250	-0,172	1								
Gggd	0,061	0,054	0,277	0,262	1							
Ggee	-0,368	-0,437	-0,433	0,047	-0,139	1						
Ggeh	-0,528	-0,497	-0,140	0,254	0,132	0,250	1					
Теа	-0,182	-0,184	-0,490	-0,145	-0,127	0,400	-0,041	1				
Leb	-0,346	-0,396	0,150	0,105	0,469	0,203	0,405	0,301	1			
Emplr	-0,418	-0,380	-0,428	0,144	-0,547	0,352	0,226	0,418	0,065	1		
GdeR&D	-0,531	-0,536	-0,402	0,319	-0,009	0,507	0,739	0,230	0,458	0,510	1	
Gggfcf	-0,038	-0,053	-0,170	-0,047	-0,509	0,286	-0,215	0,019	-0,471	0,205	-0,040	1

Table 3. Correlation Matrix between Selected Vulnerabilities and Capacities Indicators of Socio-Economic Area for the Period 2011-2020

Source: Author's calculations; Eurostat data

But the correlation matrix does not show any causality, so in Table 4,5,6,7 and 8 are shown the results of the regression equation formulated as follows:

$Arpr = \alpha_0 + \alpha_1 Ggee + \alpha_2 Ggeh + \alpha_3 Tea + \alpha_4 Leb + \alpha_5 Emplr + \alpha_6 GdeR \&D + \alpha_7 Gggfcf + \epsilon$	(1)
$IqsrS80/S20 = \beta_0 + \beta_1 Ggee + \beta_2 Ggeh + \beta_3 Tea + \beta_4 Leb + \beta_5 Emplr + \beta_6 GdeR \& D + \beta_7 Gggfcf + \epsilon$	(2)
$Geg = \delta_0 + \delta_1 Ggee + \delta_2 Ggeh + \delta_3 Tea + \delta_4 Leb + \delta_5 Emplr + \delta_6 GdeR \&D + \delta_7 Gggfcf + \epsilon$	(3)
$Oadr = \gamma_0 + \gamma_1 Ggee + \gamma_2 Ggeh + \gamma_3 Tea + \gamma_4 Leb + \gamma_5 Emplr + \gamma_6 GdeR \&D + \gamma_7 Gggfcf + \epsilon$	(4)
$Gggd = \chi_0 + \chi_1 Ggee + \chi_2 Ggeh + \chi_3 Tea + \chi_4 Leb + \chi_5 Emplr + \chi_6 GdeR \&D + \chi_7 Gggfcf + \epsilon$	(5)
Where: $\alpha_i, \beta_i, \delta_i, \gamma_i$ and $\chi_i, i=0.7$ – are coefficients of the equations, Arpr is At-risk poverty rate by sex, IqsrS80/S20 is Income quintile share ratio (S80/S20) by	

poverty rate by sex, IqsrS80/S20 is Income quintile share ratio (S80/S20) by sex, Geg is Gender employment gap, Oadr is Old-age-dependency ratio, Gggd is General government gross debt, Ggee is General government expenditure by function -Education, Ggeh is General government expenditure by function - Health, Tea is Tertiary educational attainment by sex, age group 30-34, Leb is Life expectancy at birth by sex, Emplr is Employment rate by sex, age group 20-64, GdeR&D is Gross domestic expenditure on R&D (GERD), Gggfcf is General government gross fixed capital formation, ε – error term.

For the first equation (see table 4), analyzing the value of the determination coefficient or R2, which is used to measure the intensity of the correlation between the endogenous variable and its determinants, it is observed that the value of 0.431727 is relatively small. At the same time, with respect to the adjusted R2, equal to 0.416544 at the sample level, it can be suggested that there is a relatively weak correlation between the variables in the model. The coefficients of independent variables are not significantly different from zero, only Ggeh shows a satisfactory result. The Ggee, Ggeh, Leb, Emplr and Gggfcf have an associated probability or a

p-value below 0.05, which confirms that for those indicators, the null hypothesis H0 can be rejected, which proposes those indicators for the model. Looking at the Durbin-Watson statistics, which tests the null hypothesis that the residuals from an ordinary least-squares regression are not autocorrelated against the alternative that they are, we are noticing that the value DW is over R2, which indicates that the regression performed is not spurious.

Table 4. Results for the Regression Equation for Arpr Depending on the Variables Selected for Capacities for Social-Economic Domain

Dependent Variable: Af Method: Least Squares Date: 01/14/22 Time: 7 Sample: 1 270 Included observations:	17:31			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GGEE GGEH TEA LEB EMPLR GDER_D GGEFCF	67.28369 -0.524098 -1.171635 0.010920 -0.340215 -0.182920 0.504833 -0.539274	7.826880 0.252493 0.202244 0.023535 0.087536 0.038488 0.400726 0.216338	8.596490 -2.075693 -5.793179 0.463972 -3.886559 -4.752631 1.259795 -2.492743	0.0000 0.0389 0.0000 0.6431 0.0001 0.0000 0.2089 0.0133
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.431727 0.416544 2.909142 2217.335 -667.3747 28.43510 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	16.64259 3.808560 5.002775 5.109395 5.045589 2.032922	

Source: Author's calculations, using Eurostat, annual data and Eviews11 soft

Table 5. Results for the Regression Equation for IqsrS80/S20 Depending on the Variables Selected for Capacities for Social-Economic Domain

Dependent Variable: IQ Method: Least Squares Date: 01/14/22 Time: 1 Sample: 1 270 Included observations:	7:35			
Variable	Coefficient	Std. Error	t-Statistic	Prob
С	22.53280	2.386823	9.440500	0.000
GGEE	-0.279475	0.076998	-3.629626	0.000
GGEH	-0.284049	0.061675	-4.605599	0.000
TEA	0.009316	0.007177	1.297988	0.195
LEB	-0.139191	0.026694	-5.214236	0.000
EMPLR	-0.046253	0.011737	-3.940755	0.000
GDER_D	0.116953	0.122202	0.957048	0.339
GGGFCF	-0.188198	0.065973	-2.852666	0.004
R-squared	0.444355	Mean depend	lent var	4.88837
Adjusted R-squared	0.429510	S.D. depende	ent var	1.17455
S.E. of regression	0.887149	Akaike info cr	iterion	2.62757
Sum squared resid	206.2027	Schwarz crite	rion	2.73419
Log likelihood	-346.7225	Hannan-Quin	n criter.	2.67038
F-statistic	29.93206	Durbin-Watso	on stat	2.02812
Prob(F-statistic)	0.000000			

Source: Author's calculations, using Eurostat, annual data and Eviews11 soft

For the second equation (see table 5), analyzing the value of the determination coefficient or R2, it is observed that the value of 0.444355 is relatively small, but has a better value compared to the result of the previous equation, suggesting that there isn't a very strong correlation between the variables in the model. The coefficients of independent variables are not significantly different from zero, only Ggee and Ggeh shows better results. The Ggee, Ggeh, Leb, Emplr and Gggfcf have an associated probability or a p-value below 0.05, which confirms that for those indicators, the null hypothesis H0 can be rejected, which proposes those indicators for the model. Looking at the Durbin-Watson statistics, we are noticing that the value DW is over R2, which indicates that the regression performed is not spurious.

 Table 6. Results for the Regression Equation for Geg Depending on the Variables

 Selected for Capacities for Social-Economic Domain

Dependent Variable: GEG Method: Least Squares Date: 01/14/22 Time: 17:37 Sample: 1 270 Included observations: 270										
Variable	Coefficient	Std. Error	t-Statistic	Prob						
С	-76.43308	10.06105	-7.596928	0.000						
GGEE	-0.936474	0.324567	-2.885306	0.004						
GGEH	0.204447	0.259974	0.786414	0.432						
TEA	-0.300323	0.030253	-9.926882	0.000						
LEB	1.290085	0.112523	11.46503	0.000						
EMPLR	0.028369	0.049474	0.573408	0.566						
GDER_D	-3.534615	0.515113	-6.861828	0.000						
GGGFCF	0.908826	0.278091	3.268091	0.001						
R-squared	0.583169	Mean depend	lent var	10.5370						
Adjusted R-squared	0.572032	S.D. depende		5.71628						
S.E. of regression	3.739553	Akaike info cr		5.50499						
Sum squared resid	3663.875	Schwarz crite	rion	5.6116						
_og likelihood	-735.1738	Hannan-Quin	n criter.	5.54780						
⁼ -statistic Prob(F-statistic)	52.36454 0.000000	Durbin-Watso	2.33502							

Source: Author's calculations, using Eurostat, annual data and Eviews11 soft

For the third equation (see table 6), analyzing the value of the determination coefficient or R2, it is observed that the value of 0.583169 is relatively good, and the adjusted R2 is 0.572032, a lot better compared to the result of the previous equations, showing a considerably good correlation between the variables in the model.

The coefficients of independent variables are not significantly different from zero, except Leb and GdeR&D. The Ggee, Tea, Leb, GdeR&D and Gggfcf have an associated probability or a p-value below 0.05, which confirms that for those indicators, the null hypothesis H0 can be rejected, which proposes those indicators for the model. Looking at the Durbin-Watson statistics, we are noticing that the value DW is over R2, which indicates that the regression performed is not spurious.

For the fourth equation (see table 7), analyzing the value of the determination coefficient or R2, it is observed that the value of 0.163979 it's pretty precarious, showing the weakest correlation between the variables from the model. The

coefficients of independent variables are not significantly different from zero, except GdeR&D.

Table 7. Results for the Regression Equation for Oadr Depending on the Variables	
Selected for Capacities for Social-Economic Domain	

Dependent Variable: O/ Method: Least Squares Date: 01/14/22 Time: 1 Sample: 1 270 Included observations:	7:39			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GGEE GGEH TEA LEB EMPLR GDER_D GGGFCF	26.74653 -0.294237 -0.261484 -0.113461 0.020907 0.057805 2.033882 -0.143930	10.51572 0.339234 0.271723 0.031621 0.117608 0.051710 0.538391 0.290658	2.543481 -0.867356 -0.962318 -3.588200 0.177771 1.117855 3.777704 -0.495187	0.0116 0.3865 0.3368 0.0004 0.8590 0.2647 0.0002 0.6209
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.163979 0.141643 3.908547 4002.505 -747.1077 7.341349 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Wats c	27.62667 4.218726 5.593390 5.700010 5.636204 1.884393	

Source: Author's calculations, using Eurostat, annual data and Eviews11 soft

The Tea and GdeR&D have an associated probability or a p-value below 0.05, which confirms that for those indicators, the null hypothesis H0 can be rejected, which proposes those indicators for the model. Looking at the Durbin-Watson statistics, we are noticing that the value DW is over R2, which indicates that the regression performed is not spurious. It is interesting that tertiary education can reduce the rate of obesity in children but does not have a very strong statistical effect, while gross domestic expenditure on research and development has a significant impact but not positive, rather negative, evolving in the same direction with the rate of young children obesity.

For the fifth equation (see table 8), analyzing the value of the determination coefficient or R2, it is observed that the value of 0.595809 is relatively good, and the adjusted R2 is 0.585010, is the best result of adjusted R2 compared to the results of the previous equations, showing a considerably important correlation between the variables in the model.

The coefficients of independent variables are not significantly different from zero, except Ggeh, Leb, Emplr, GdeR&D and Gggfcf. The Leb, Emplr and Gggfcf have an associated probability or a p-value below 0.05, which confirms that for those indicators, the null hypothesis H0 can be rejected, which proposes those indicators for the model. Looking at the Durbin-Watson statistics, we are noticing that the value DW is over R2, which indicates that the regression performed is not spurious.

 Table 8. Results for the Regression Equation for Gggd Depending on the Variables
 Selected for Capacities for Social-Economic Domain

Dependent Variable: G0 Method: Least Squares Date: 01/14/22 Time: 1 Sample: 1 270	7:42			
Included observations:	Coefficient	Std. Error	t-Statistic	Prob
С	-26.18454	66.86401	-0.391609	0.695
GGEE	0.061499	2.157013	0.028511	0.977
GGEH	-1.090198	1.727744	-0.630995	0.528
TEA	-0.085931	0.201059	-0.427390	0.669
LEB	4.787263	0.747811	6.401698	0.000
EMPLR	-3.647941	0.328799	-11.09475	0.000
GDER_D	6.623372	3.423350	1.934763	0.054
GGGFCF	-8.194624	1.848143	-4.433976	0.000
R-squared	0.595809	Mean depend	lent var	69.0259
Adjusted R-squared	0.585010	S.D. depende		38.578
S.E. of regression	24.85242	Akaike info cr	iterion	9.2929
Sum squared resid	161822.4	Schwarz crite	rion	9.3995
Log likelihood	-1246.551	Hannan-Quin	9.3357	
F-statistic Prob(F-statistic)	55.17254 0.000000	Durbin-Watso	2.4286	

Source: Author's calculations, using Eurostat, annual data and Eviews11 soft

In addition to correlation and regression, it has been performed a unit root test (see table 9) a Johansen Cointegration Test (Table 10) and a Granger causality test (table 11).

In order to adjust the model and make correct specification, it has been perform a unit root test in levels and first differences in order to determine univariate properties of the used data series.

As presented in Table no. 9, the results show that it could reject the null hypothesis of unit roots for all the variables in level forms for trend with intercept, because t critical value was in module under t-statistic. Although it was no longer necessary, at first differences things are even more obvious, the null hypothesis being easily rejected. It means that the calculated ADF statistics are more than their critical values in level form, suggesting that the variables are level stationary, indicating that these variables are order zero integrated I(0), which is normal for panel data.

Establishing that all variables are integrated in the same order, it has been proceed with the Johansen Cointegration test and Granger Causality Test. As it shows in the table 10, the results of the Johansen's cointegration test show that there are multiple cointegrating equations at 5% level of significance.

In table no.11 (presented below only for indicators of vulnerabilities against the capacities ones), the Granger causality test reflects that the probability under 0.05 is accomplished only for: - Arpr, which is Granger cause by Ggee, Tea, Leb, Emplr, Gggfcf; - IqsrS80/S20, which is Granger cause by Ggee, Tea, Leb, Emplr, Gggfcf; -

Oadr, which is Granger cause Ggeh, Tea, Leb, Emplr, GdeR&D; and – Gggd, which is Granger cause by Ggee, Ggeh, Tea, Leb, Emplr, GdeR&D.

Series Label	Level t-Statistic	Critical Value		First Difference t-Statistic	Critical Value		
	Constant & Trend	5%	1%	Constant	5%	1%	
Appr	-6.692	2 400	2.005	-6.752	0.070	2.454	
0420310970	0.000*	-3.428	-3.995	0.000*	-2.873	-3.456	
IqsrS80/S20	-8.415			-14.131		5. 	
-	0.000*	-3.428	-3.995	0.000*	-2.872	-3.455	
	-9.681	1. 	0.00002020000	-9.359	2 2 - 12(%4(2-2-1)	12012203	
Geg	0.000*	-3.427	-3.993	0.000*	-2.873	-3.456	
10000	-12.208	2.422	0.005	-6,328	0.070	2.454	
Oadr	0.000*	-3.428	-3.995	0.000*	-2.873	-3.456	
	-9.679	2 427	2 002	-11.828	0.070	2.455	
Gggd	0.000*	-3.427	-3.993	0.000*	-2.872	-3.455	
	-4.079	-3.427	2 004	-12.715	2 072	-3.456	
Ggee	0.008*		-3.994	0.000*	-2.873		
	-9.048	-3.428	-3.995	-5.879	-2.873	2 156	
Ggeh	0.000*	-3.428	-3.993	0.000*	-2.8/3	-3.456	
MARKANAN Marka	-13.688	-3.427	-3.993	-14.638	-2.872	-3.45	
Tea	0.000*	-3.427	-3.993	0.000*	-2.072	-3.433	
	-6.660	-3.428	-3.995	-5.624	-2.873	-3.456	
Leb	0.000*	-3.428	-3.995	0.000*	-2.875	-3.430	
	-9.753	2 127	2 002	-10.476	2 072	2 454	
Emplr	0.000*	-3.427	-3.993	0.000*	-2.873	-3.456	
YYYYY YYYY	-10.423	2 427	2 004	-6.715	2 072	2.454	
GdeR&D	0.000*	-3.427	-3.994	0.000*	-2.873	-3.456	
	-7.372	2 127	2.002	-11.112	0.070	20 1000000000	
Gggfcf	0.000*	-3.427	-3.993	0.000*	-2.872	-3.455	

 Table 9. Augmented Dickey - Fuller Unit Root Test and Stationary Results for

 Selected Socio-Economic Indicators

Source: Author's calculations, using Eurostat, annual data and Eviews11 soft. The ADF tests examine the null hypothesis of a unit root against the stationary alternative; the * is the p-value.

Also, the capacities indicators are determined by vulnerabilities indicators, such as: -Arpr is a Granger cause for all capacities indicators; - IqsrS80/S20 is Granger cause for all capacities indicators except Ggeh; - Geg is Granger cause for Ggeh, Tea, Emplr, GdeR&D, Gggfcf; - only Tea, Leb and Emplr is Granger cause by Oadr, and Gggd is a Granger cause for all capacities indicators, except Leb and Gggfcf.

ŒCONOMICA

Table 10. Johansen Cointegration Test for Unrestricted Cointegration Rank Test (Trace) for Selected Socio-Economic Indicators and for all Proposed Equations

Date: 01/16/22 Sample (adjus Included obse Trend assump Series: ARPR (Lags interval (ted): 6 270 vations: 265 fion: Linear d GGEE GGEH	aiter adjustm eterministic b TEA LEB ENF	rend	R_D GGGFCF			Date: 01/16/2 Sample (ad) Included obs Trend assum Series: IQSR Lags interval	usted): 6 ervation option: L S80_S2	270 s: 265 after a inear determi 0 GGEE GGE	nistic 14 TE/	trend	LR GDER	D GGGFCF	
Unrestricted C	cintegration F	Rank Test (Tra	ace)				Unrestricted	Cointeg	ation Rank T	est (Ti	(8 06			
Hypothesized No. of CE(s)	Eigenva		acë Istic	0.05 Critical Value	Prob	.**	Hypothesiz No. of CE(s		genvalue	- 255	race etistic	0.05 Critical Va	ilue Pr	ob.**
None* At most 1* At most 2*	0.8137 0.5521 0.3977	568	4,162 8377 9560	159.5297 125.6154 95.75366	125.6154 0.0000 None* 0.808 95.75366 0.0000 Atmost 1* 0.5910).808511 1.591007	59	29.106 1.0808	159.529 125.619	i4 0.1	0000	
At most 3* At most 4* At most 5*	0.2545 0.2130 0.1581	52 221 71 143	5833 7343 3572	69.81889 47.85613 29.79707	0.00 0.00 0.00	00 00	At most 2 At most 3 At most 4		1.353913 1.268182 1.223177	238	4.1558 8.3982 5.6591	95,753(69,818) 47,8561	19 0.1	0000 0000 0000
At most 6 * At most 7 *	0.0912	34.6	0020 7474	15.49471 3.841465	0.00	00	At most 5 At most 6 At most 7	• 0	1 167595 1 108788 1 035591	88. 40.	73521 12456 03596	29.7970 15.4947 3.8414	07 0.1 71 0.1	0000 0000 0019
ample (adjusted); 6 270 duded observations: 2 rend assumption: Linea etes: GEG GOEE GOEP ags interval (in first dife	5 der adjustments deterministic bend i TEA LEB EMPLIR (Tierd assumpt Series: OHER G	ed; 6.270 skove: 285 aller on Givear deleri	inidicterd LEBENPLR(DER, DANARTS		Sampi Include Trend: Selles	e (adjuste diobserv essumpti GGCED G	Time: 2018 d) 6:270 dives: 265 alle m: Linear dete GEE: 0:084 TE fist difference:	ninisisterd Aleb Birpla G	DER O GOGECE	
nesticket Coinlegado	Rank Test (Stace)			Unestided Co	idegtalan Rank	ist/ing			Unest	ided Co	degiation Ran	i Test(Tace)		
Hpatresced Na. of CB(s) — Eigen	Trace alue Statistic	0.5 Critical late	Prot. ^{er}	Hipothesized No. of CE(s)		1925 Szásia:	NE Critol Vale	Pob."		hesizek fCE s	Egenalue	Trace Statistic	1.05 Cifical/Islue	Pob*
lians" 0,77 Amost 1* 0,58 Amost 2* 0,54 Amost 2* 0,29 Amost 2* 0,29 Amost 2* 0,10 Amost 3* 0,17 Amost 3* 0,12	265 684.131 487 445.138 767 238.671 064 137.568 290 58.1102 310 27.4408	2 1256154 8 9575366 1 6581888 2 4785613 0 2979707 7 1549471	1000 1000 1000 1000 1000 1000 1000 100	Net? Amst1' Amst2' Amst3' Amst4' Amst5' Amst5' Amst5'	17854 17514 1.0558 1.2558 1.2558 1.2559 1.2579 1.1159 1.1159	118721 811137 41090 98529 98529 14554 31079 47409	125.6154 1 95.7536 1 99.11889 1 47.15615 1 29.74107 1 15.44471	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ne' 1951' 1953' 1954' 1955' 1955' 1955' 1955'	0.785687 0.585546 0.281580 0.286771 0.225774 0.142289 0.083622 0.011584	909,5004 501,3004 298,0769 210,4338 130,3649 51,18100 20,51296 31092994	1595297 1256154 9675366 6881889 4785113 2878707 1549471 3841465	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ince test indicates & co dendes rejection of the "Nackimon Haus-Nich	degating equisitat hypothesis at the O	te 1.05 ievel 15 ievel		Tacetestindi: * dendes rejec	des 8 contegrat for of be tigoth aug-Michelis (19	ng egyls) att esis atter 1.0	te 1 15 level	THE PART	* deno	bs weet		ding eqn(3) aith heas aithe 1.05 991) p-diues		

Source: Author's calculations, using Eurostat, annual data and Eviews11 soft.

107

Pairwise Granger Causality Tests			-	Determinant =>	Determined
Date: 01/15/22 Time: 15:08 Sample: 1 270	-		-	GGEE	
Lags: 2				TEA	ARPR
Null Hypothesis:	Otris	F-Statistic	Prob.	LEB	
GGEE does not Granger Cause ARFR	268	100.781	6.E-05		
ARPR does not Granger Cause GGEE		195,861	8.E-09	EMPLR	
GGEH does not Granger Cause ARPR ARPR does not Granger Cause GGEH	768	0.69602	0.4995	GGGFCF	
TEA does not Granger Cause ARPR	268	154.110	1.E-06	GGEE	IQSRS80/S20
ARPR does not Granger Cause TEA		171.187	0.0002	TEA	
LEB does not Granger Cause ARPR	268	235.240	3.6/10	LEB	
ARPR does not Granger Cause LEB	12.11	440.146	0,0132		
EMPLR does not Granger Cause ARPH	268	637.787	0.0025	EMPLR	
ARPR does not Granger Cause EMPUR GDER_D does not Granger Cause ARPR	268	124.915	7.6-06	GGGFCF	
ARPR does not Granger Cause GDER_D	-	258.197	9.6-11	GGEE	GEG
GGGFCF does not Granger Cause ARPR	208	124.081	7.E-06	TEA	
ARPR does not Granger Cause GGGFCF		415,293	0.01238	EMPLR	
GGEE down not Granger Cause KQSR58D_520	268	117,042	1.6-05		
KQ5R580_520 does not Granger Cause GOEE	8.00	111,529	2.5-05	GGGFCF	
GOEH does not Granger Cause (CSRS00_520	268	130.318 258.099	0,2734 0.0776	GGEH	OADR
IQSRS80_S20 does not Granger Cause GGEH TEA does not Granger Cause IQSRS80_S20	268	157,374	4.E-07	TEA	
EQSESSID_520 closes not Granger Cause TEA.		878.129	0.0013	LEB	
LEE does not Granger Cause IQSR580_520	201	191,910	1.1-00	EMPLR	
IDSR580_520 does not Granger Cause LEB		467.217	0.0101		
EMPLR does not Granger Cause (QSR580_S20	268	156.885	4.E-07	GDER&D	
K15R580_520 does not Granger Cause EMPLR		134,129	8.E-06	GGEE	GGGD
GDER O does not Granger Cause IQSRSM_525 IOSRSM_535 does not Granger Cause IQSRSM_525	368	127.503	0.1048	GGEH	
IQSRSB0_535 does not Granger Cause GDDR_D BDDFCF does not Granger Cause IQSRS82_528	208	153,084	5.E-07	TEA	
IQ5P380_520 does not Granger Cause GGOFCF		461.264	0.0107		
GGEE does not Granger Cause OADR	268	115.272	0.3050	LEB	
OADR does not Granger Cause GGEE	21126.6	285,617	0.0570	EMPLR	
GGEH does not Granger Cause OAOII	201	831.200	0.0003	GDER&D	
GADR does not Granger Cause GGDH TEA does not Granger Cause GADR	268	112,375	0.3266 8.E-07		GGEE
OADR does not Granger Cause TEA	400	184.399	3.E-08		GGEH
LEB does not Granger Cause CAOR	268	204,705	5.E-09	4000	TEA
OADR does not Granger Cause LEB	- In Hallow	432,790	0.0542		-
EMPUR does not Granger Cause GADR	268	475.042	6,0095	ARPR	LEB
DADR does not Granger Cause EMP18		717,827	0.0009		EMPLR
GDER_D does not Granger Cause OADR OADR does not Granger Cause GDER_D	268	610.675 279.390	0.0026		GDER&D
GGGFCF does not Granger Cause OAOR	268	116.016	0.3150		GGGFCF
GADR does not Granger Cause GGGFCF		294.832	0.0542		
GGEE does not Granger Cause GOGO	108	153.743	0.0303		GGEE
1860D does not dranger Cause OGEE		102.844	5.E-05		TEA
GGEH does not Granger Cause GGGD	268	365.301	0.0236	IQSRS80/S20	LEB
GGGD does not Granger Cause GGEH	268	364,555	4.6-21		EMPLR
TEA does not Granger Cause GGGD ISGGD does not Granger Cause TEA	2545	339.621 526.422	0.0350	1	GDER&D
128 does not Granger Cause 0000	265	464.253	0.0086	1	
666D does not Granger Cause LEB	1.1257	0.36252	0,9953		GGGFCF
EMPLR does not Granger Cause GGGD	268	155.705	A.E-07		GGEH
GGGD does not Granger Cause EMPLR		836.351	6.0003		TEA
GDER_D does not Granger Dause GGGD	208	721.487	0.0009	GEG	EMPLR
GGGD does not Granger Cause GDD1_D GGGPCF does not Granger Cause GGGD	268	448,788	2.8-17 0.2308		GDER&D
GGGD does not Granger Cause GGGPCF	100	236,596	0.2398	1	
GEG does not Granger Cause GGEE	208	171.327	0.1819		GGGFCF
GGEE does not Granger Cause GEG	100	\$17,835	0.0052	1	TEA
GEG does not Granger Cause GGEH	205	461.003	0.0105	OADR	LEB
055H sloes not Granger Cause 055		0.54289	0.5817		EMPLR
GEG does not Granger Cause TEA	268	807,921	0,0004		
TEA does not Granger Cause 6EG	368	157,867	3.E-07	1	GGEE
GEG does not Granger Cause EMPLR EMPLR does not Granger Cause GEG	-456	121.001 163,578	9.E-06 2.E-07	1	GGEH
GDDR_D does not Granger Cause GDD	205	0.75777	0.4897	GGGD	TEA
ODD does not Granger Cause GDER_D		554.991	0,0064		EMPLR
GGGFCF does not Granger Cause GEG	268	606.744	0.0026	1	GDER&D
GEG does not Granger Cause GGGECE		291.657	0.0211		

Table 11. Granger Causality Test Results for Selected Socio-Economic Indicators and the Synthesis of the Causal Direction

Source: Author's calculations, using Eurostat, annual data and Eviews11 soft.

5. Conclusion

The socio-economic field seems, more than ever, extremely important in order to limit the dramatic effects of the COVID-19 pandemic. Thus, starting from the 2021 Resilience Dashboards report, the article tries to highlight the internal links in this field between the indicators that describe the vulnerabilities and those that describe the capabilities of the selected socio-economic indicators. The basic assumption is that indicators that describe capabilities can reduce the values of indicators that describe vulnerabilities, of the socio-economic domain.

For the present study, the selected indicators for vulnerabilities are: At-risk-ofpoverty rate by sex (Arpr), Income quintile share ratio (S80/S20) by sex (IqsrS80/S20), Gender employment gap (Geg), Old-age-dependency ratio (Oadr), General government gross debt (Gggd), and the selected indicators for capabilities are: General government expenditure by function - Education (COFOG) (Ggee), General government expenditure by function - Health (COFOG) (Ggeh), Tertiary educational attainment by sex, age group 30-34 (Tea), Life expectancy at birth by sex (Leb), Employment rate by sex, age group 20-64 (Emplr), Gross domestic expenditure on R&D (GERD) (GdeR&D), General government gross fixed capital formation (Gggfcf). There has been used Eurostat database, the data arrangement is panel type and the period analyzed is 2011-2020.

Starting the analysis with correlation matrix we can notice that almost all indicators that describe vulnerabilities are positively correlated with each other, and almost all indicators that describe capabilities are also positively correlated with each other. At the same time, the indicators that describe the vulnerabilities are negatively correlated with those that describe the capacities, with small exceptions regarding Oadr and Gggd, obesity rates among children being practically stimulated by the good evolution of the indicators of socio-economic capabilities.

Of the indicators that describe socio-economic vulnerabilities, only At-risk-ofpoverty rate by sex and Income quintile share ratio (S80/S20) are positively and strongly correlated, so the poverty has his say on income inequality and vice-versa at EU27 level countries. Regarding the indicators that describe the capacities, among them, the most significant links have the government expenditures for education (Ggee) and health (Ggeh) with those for research and development (GdeR&D). At the same time, the Employment rate (Emplr) has a significant positive correlation with GdeR&D. Looking at the indicators that describe the vulnerabilities in relation to those that describe capacities the correlation of over 50%, have only: Arpr with GdeR&D, Arpr with Ggeh, IqsrS80/S20 with GdeR&D, Gggd with Emplr and Gggd with Gggfcf.

Thus, research and development expenditures play an important role not only for capacity-describing indicators, but also for the power to limit vulnerabilities, both

directly and indirectly, through their influence on other capacity-describing indicators.

If we formulate equations of determination between each indicator that describes the field of vulnerabilities and all the indicators that describe the capacities we can find:

- All regression equations have an R2 between 0.40 and almost 0.60, except for the one that defines the obesity rate of young children (Oadr), facts that it can propose the model formulation as appropriate;

-Independent variables that can properly explain the dependent variables (e.g. a p-value below 0.05) are: - for Arpr the Ggee, Ggeh, Leb, Emplr and Gggfcf; - for IqsrS80/S20 the Ggee, Ggeh, Leb, Emplr and Gggfcf; - for Geg the Ggee, Tea, Leb, GdeR&D and Gggfcf; - for Oadr the Tea and GdeR&D, and - for Ggged the Leb, Emplr and Gggfcf;

- The minus sign dominates the values of the coefficients of the independent variables, which suggests, as it is natural, that the capacities diminish the vulnerabilities (the dependent variables), being important that the Gender employment gap (Geg) is dominated by the negative correlation with GdeR&D, and the gross public debt (Gggd) of the relationship with employment rate (Emplr) and with General government gross fixed capital formation (Gggfcf).

In order to better adjust the model, there is performed a unit root test, a Johansen Cointegration Test and a Granger causality test. As is natural, in the case of panel data, the ADF test shows stationary values at the level and because the indicators are of the same domain, the Johansen Cointegration Test shows numerous cointegration relations. Also, the Granger causality test reveals that: Ggee, Tea, Leb, Emplr, Gggfcf are the Granger cause for Arpr; - Ggee, Tea, Leb, Emplr, Gggfcf are the Granger cause for IqsrS80/S20; - Ggeh, Tea, Leb, Emplr, GdeR&D are Granger cause for Oadr; and - Ggee, Ggeh, Tea, Leb, Emplr, GdeR&D are Granger cause for Gggd.

The results indicate, as was natural, the need for permanent private and especially public efforts in the field of education and health, employment, prolonging healthy life, investing in the fixed capital of the state (and not only), in order to make a substantial decline in socio-economic risks and vulnerabilities.

References

***COM.(2020). 493 final https://ec.europa.eu/info/sites/info/files/strategic_foresight_report_2020_1.pdf.

 $*** https://ec.europa.eu/jrc/sites/default/files/jrc-science-for-policy-brief_resilient-country1.pdf.$

Asheim, G. B. (2000). Green national accounting: why and how? *Environment and Development Economics* 5(2000): 25048.

Ayres, R. U. (1978). *Resources, Environment, and Economics: Applications of the Materials/ Energy Balance Principle*. New York, New York: John Wiley and Sons.

European Commission (2021). Resilience Dashboards for the Social and Economic, Green, Digital, and Geopolitical Dimensions.

Goldthorpe, JH. (2007). On sociology. 2. Illustration and retrospect. Stanford: Stanford University Press.

Hanley, N. (2000). Macroeconomic measures of sustainability. *Journal of Economic Surveys* 14 (1), pp. 1–30.

Hill, K.; Hoffman, D. & Rex. T. R. (2005). *The Value of Higher Education: Individual and Societal Benefits*. Tempe, Arizona: Arizona State University, W.P. Carey School of Business.

Hsing, Yu. (2005). Economic growth and income inequality: the case of the U.S. *International Journal of Social Economics* 32(7), pp. 639-647.

Krueger, A. B.; Kahneman, D.; Schkade, D.; Schwarz, N. & Stone A. (2008). "*National Time Accounting: The Currency of Life*", NBER, forthcoming in A. B. Kruger (ed.), Measuring the Subjective Well-being of Nations: National Accounts of Time Use and Well-Being, University of Chicago Press, Chicago.

Manca, A. R.; Benczur, P. & Giovannini, E. (2017). Building a Scientific Narrative Towards a More Resilient EU Society, *JRC Science for Policy Report*, JRC 28548.

Max-Neef, M. (1995). Economic growth and quality of life: a threshold hypothesis. *Ecological Economics* 15, pp. 115–118.

Pearce, D.; Markandya, A. & Barbier, E. (1990). Sustainable Development: Policy and Analysis in the *Th ird World*. Cheltenham: Edward Elgar Publishing.

Pezzey, J.C.V. (1992). Sustainability: an interdisciplinary guide. Environmental Values 1, pp. 321-362.

Rose, D. & Harrison, E. (2010). Social class in Europe: An introduction to the European socioeconomic classification. NewYork: Routledge.

Rutter, M. (2012). *Resilience as a Dynamic Concept. Development and Psychopathology* 24 (02), pp. 335–344.

Stiglitz, Sen & Fitoussi (2009). Report by the Commission on the Measurement of Economic Performance and Social Progress.

Talberth, J.; Cobb, C. & Slattery, N. (2006). The Genuine Progress Indicator 2006: a tool forsustainabledevelopment.RedefiningProgress,OaklandCA.https://www.researchgate.net/publication/252265237_The_Genuine_Progress_Indicator_2006/link/56fe2d0b08ae650a64f66260/download.

Walker, B.; Holling, C. S.; Carpenter, S. R. & Kinzig, A. (2004). Resilience, Adaptability and Transformability in Social–ecological Systems. *Ecology and Society* 9 (2), p. 5.