
ISSN: 2821-4374 DIDACTICA DANUBIENSIS

 59

Application of the Fibonacci Series in

Natural Language Processing

Radu Bucea-Manea-Tonis1, Adrian Beteringhe2

Abstract: The article investigates some possibilities of using the new Javascript programming

language for generating parsing trees and histograms for natural language processing (NLP). At the

same time, we are trying to break away from the AI-type paradigm (“stochastic parrot”) applied in

language theory considering it too limited and focusing more on the rational approach, exploring the

functional characteristics of Javascript language in the key of predicate logic. Two of Chomsky’s

ideas were crucial for the development of our research: first, there is a basal grammar innate to the

child that provides the very structures the language is built upon, and second, the recursive nature of

the human language Chomsky had noticed that allows us to build an indefinite amount of statements

from a finite set of grammar rules, plus the composable character of grammar that begets infinite long

verbal structures. The last observation gave us the idea to establish isomorphic relations between

natural language and formal systems to prove our theorems (future work). The agglutinative

mechanism of making both sensical or not-sensical verbal content drew our attention to the Fibonacci

series of numbers that is fundamental for developing living structures both at the molecular and

macro level (e.g. breeding of rabbits, use of the phi constant in architecture, and so on). This way the

bigrams (from n-grams) can result from concatenating strings one after another creating entities in a

coherent, linked-list style, rational manner. These collocations may be interpreted either as new

concepts (e.g. military-doctor) or camouflaged predicates built upon identity principles (e.g. is or

exists). The practical way we decided to test our hypothesis was to employ the functional capabilities

of Javascript programming language that brings us even closer to the logical nature of the human

language. The new ES6 streaming process of transforming a text was another aspect similar to the

pipeline style of the human brain in processing data. The two-way parsing on texts calculating the

frequency of pairs’ appearance proved to be of significant importance in dead language studies or

searching for anagrams. The use of the Wink software package language model allowed us to create

1Senior professor, Danubius University of Galati, Romania, Address: 3 Galati Blvd., 800654 Galati,

Romania, Tel.: +40727888619, 0372 361 226, E-mail: radumanea@univ-danubius.ro.
2Associate Professor, Danubius University of Galati, Romania, Address: 3 Galati Blvd., 800654

Galati, Romania, Tel.: 0372 361 226, Corresponding author: adrianbeteringhe@univ-danubius.ro.

Didactica Danubiensis, Vol. 3, No. 1/2023, pp. 59-71

Vol. 3, no 1/2023 DIDACTICA DANUBIENSIS

60

predicates like verbs (subject, object) based on the SVO structure of IE languages, the future

knowledge base for our next proofing language system.

Keywords: functional programming; language analysis; mathematical logic; parsing trees

1. Introduction

Automatic natural language processing (NLP) began in the 1950s when Alan

Turing published Computing Machinery and Intelligence, a pioneering paper on

artificial intelligence. Related to the first grasp on language learning, was the

binary generation of verbal phrases, the peripheral mechanism being the most

notable example in this matter. Colorless green ideas sleep furiously was

Chomsky’s example of a sentence that is grammatically well-formed, but

semantically nonsensical used in his 1957 Syntactical Structures book. It is

developed almost like a balanced binary tree, and the following year (1958), the

linguist and anthropologist Dell Hymes demonstrated how that nonsense words can

develop into something meaningful when in the right sequence: Hued ideas mock

the brain,/ Notions of color not yet color,/ Of pure, touchless, branching pallor/ Of

invading, essential Green...

Two of the successful NLP systems developed in the 1960s were SHRDLU and

ELIZA. Until the 1980s, most natural language processing systems relied solely on

complex sets of manually coded rules. NLP began to develop after the introduction

of machine learning algorithms starting in the 1980s. (Brownlee, 2017)

It has been observed that certain pairs of words have a higher frequency than others

accordingly to the principle of semantic localization. For example, the following

combinations (collocations) are encountered with a high frequency: doctor

engineer, civil engineer, head of service, military doctor, etc. In addition, the

direction of parsing the word tree may indicate a variable number of such

combinations, an aspect of scientific importance in the case of extinct languages

research, where the meaning of writing can be obtained from left to right, from

right to left, or alternately in both directions (gr. boustrophedon), which will

broaden the basis of analysis. Historically, the invertible computational approach

has proven useful in understanding energy conservation, studying entropy, and

understanding information transformation and transmission (Kristensen,

Kaarsgaard & Thomsen, 2022).

ISSN: 2821-4374 DIDACTICA DANUBIENSIS

 61

Final submissions not following the required format will be returned to the authors

for modification and compliance. All scientific papers should be written in English

or French. The abstract and the keywords must be written in English.

2. Materials

The increasing frequency of the CPU clock, the increasing number of

interconnected devices, and the demand for more computing power have led to a

change in the current programming paradigm. All of this poses notable challenges

for software developers to overcome these constraints. Added to these limitations

are the lack of programming expertise among researchers and ordinary users, the

high cost of automated reasoning systems (e.g. Rational Rose Enterprise from

IBM), poor accessibility to source code, and distributed access to different system

components that raise problems in the enforcement of intellectual property rights

(Khanfor & Yang, 2017; Ljunglof, 2002).

In the following table, we analyze several programming languages according to

their suitability for language analysis: object-oriented (OO), functional (FP), and

imperative programming (IL), according to Table 1:

Table 1. Suitability of Programming Languages in Distributed Computing Systems,

According to (Khanfor & Yang, 2017)

 Weaknesses Strengths

O

O

 The simplicity of OOP makes it easy to

represent many problems;

 Numerous OOP tool frameworks;

 A large number of programmers are familiar

with OOP.

FP Pure functional style only in

large and very large projects;

Writing programs using functional languages

increases operational safety;

 Lack of expert developers in

this paradigm;

Mitigates security risks by prohibiting

stateless changes;

 Complexity and cost of software

design tasks;

Top-level features encourage and promote

reuse;

 Small changes may require

extensive program restructuring

to cope with these changes;

Recursive calls promote code and feature

reuse;

 A complex register of modules. Plugin management systems and professional

execution environments (e.g. Node) are used

 Highly efficient immutable data structures

for distributed systems;

Vol. 3, no 1/2023 DIDACTICA DANUBIENSIS

62

 No side-effects.

IL They tend to be more extensive

in the number of lines of code;

 Increased estimates relative to

software development efforts;

 Mutable data structures can lead

to semantics changes in the

execution results.

The advantages made available to programmers by functional programming

languages (Haskel, Scala, Clojure, F#, etc.), of which we mention, especially

modularity, recommend this paradigm in natural language analysis in the following

directions (Khanfor & Yang, 2017; Ljunglof, 2002).

• Functional morphology - higher-order functions, static and dynamic type

resolution;

• Morphological and syntactic analysis - defining combinators to describe rule

templates;

• Semantic parsing - taxonomies handling algorithms are intuitive and allow direct

implementation in functional languages.

In addition, even the order of function composition may have ontological value,

e.g. belief (‘he’, do (‘a job’, is (‘good’))), where belief, do, and is are predicates

with one or more arguments. It should be noted that functional languages make no

distinction between a fundamental parameter and a functor, moreover, most of the

time (e.g. Javascript) the type is dynamically inferred. Thanks to this observation,

language models have been created for the NLP based on pairs of words (bigrams),

which by the order of their chaining within sentences justify a grammatical

structure (de Kok & Brouwer, 2011).

Javascript immutability (eg. Freeze () method for objects) and local scope for

variables it uses (declared with let keyword) are natural consequences of this

philosophy. Generalizing the use of functors was another functional concept that

merged data and functions into a single parameter, suitable for both data &

behaviour interchange between objects. The arrow functions facilitated this even

more by declaring a functor and initializing it in one single line of code. Another

major role played here is anonymous and immediate functions.

Nesting functions, a feature available before ES5, were gradually replaced by

currying, a special way to employ binding, a concept introduced first by the Haskel

programming language. In this respect, parameters are introduced one after another

ISSN: 2821-4374 DIDACTICA DANUBIENSIS

 63

inside individual parenthesis “()” suffixing the called function name, and being

passed in the same order as arguments of nested anonymous functions.

All these premises made way for callback style use of Javascript that made even

more room for asynchronous/event use with the advent of Promises. In this style,

the nesting is achieved at the args level, explicitly providing arrow functions with

anonymous implementations instead of parameters. Implicit arguments (e.g.

“a=1”), a variable number or parameters (e.g. “…args”), and memoizing, a

technique enabled by closures (accessing out-of-context variables by functions) and

higher order functions, which, alongside tail-calling, dramatically improve the

performance of recursive functions.

Corroborating data with Popularity of Programming Language Index (PyPL) -

Python, 27.7%; Java, 16.79%; Javascript, 9.65%, shows that the multi-paradigm

Javascript language meets the qualities necessary for an Open source approach to

natural language analysis (Krill, 2023).

There are many useful NLP libraries available like NLTK (Python), and Apache

OpenNLP (Java). Most of these libraries are not available in Javascript, so there is

a daunting task to find proper NLP libraries in Javascript. The following are the

libraries found by research and testing, after (Avinash, 2020):

• NLP.js is an NLP library for building bots developed by the AXA group. It

provides entity extraction, sentiment analysis, automatic language identification,

and more, supporting 40 languages. (https://github.com/axa-group/nlp.js)

• Natural is a general language facility for Node.js and a well-known NLP library.

It currently supports tokenizing, stemming, classification, phonetics, term

frequency–inverse document frequency (tf-idf), WordNet, string similarity, and

some inflections (https://github.com/NaturalNode/natural).

• Compromise.cool is a lightweight library that can be used to run NLP on main

browsers, and works with the English language only.

(https://github.com/spencermountain/compromise/)

• Wink.js provides NLP functions for amplifying negations, managing elisions,

creating n-grams, stems, phonetic codes to tokens, and more

(https://github.com/winkjs/wink-nlp-utils).

Vol. 3, no 1/2023 DIDACTICA DANUBIENSIS

64

3. Methodology

For start, we decided to use the Wink facility to generate bigrams

(https://winkjs.org/wink-nlp-utils/tokens-bigrams.js.html). For this purpose, we’ll

install the wink-nlp package. Next, we’ll use that package to install the wink-eng-

lite-web-model https://winkjs.org/wink-nlp/getting-started.html, please see the

figure 1:

Figure 1. Installing wink-nlp package under Node with npm@9.8.0

We start our code by loading the wink-nlp package, some helpers, and the language

model. After that, we instantiate winkNLP using the language model:

 // Load wink-nlp package.

const winkNLP = require (‘wink-nlp’);

// Load English language model — light version.

const model = require (‘wink-eng-lite-web-model’);

// Instantiate winkNLP.

const nlp = winkNLP (model);

const text = ‘Ion culege mere in spatele casei’;

const doc = nlp.readDoc(text);

console.log(doc.out());

var bigrams = function (tokens) {

 // Bigrams will be stored here.

ISSN: 2821-4374 DIDACTICA DANUBIENSIS

 65

 var bgs = [];

 // Helper variables.

 var i, imax;

 // Create bigrams.

for (i = 0, imax = tokens.length - 1; i < imax; i += 1) {

bgs.push([tokens[i], tokens[i + 1]]);

}

return bgs;

}; //bigrams()

console.log(bigrams(doc.tokens().out()));

Figure 2. Executing bigrams () token function with winkNLP

To avoid using a dependent token-generating function (e.g. tokens ()) on the

vocabulary specific to each language – we have only wink-eng-lite-web language

model - we’ll use a vector of strings, neutral in terms of language and unequivocal

in the case of lexical atoms. We intend to start from a simple sentence like “Ion

culege mere in spatele casei” which we will turn into a linear vector of strings.

We will then apply the series of Fibonacci numbers to direct access indexes to

obtain the pairs of chained words in the form of an unbalanced binary list or tree:

[‘Ion culege’, ‘culege mere’, ‘mere in spatele’, ‘in spatele casei’]

The algorithm simulates dragging a window of n × words from left to right, as in

the case of a finite state automaton, except that the symbols are read two at a time,

and the dragging is conditioned by every second token read. Please note that every

Vol. 3, no 1/2023 DIDACTICA DANUBIENSIS

66

second term of the list items plays the role of reference (pointer) to the first term in

the next item.

In 1957, Noam Chomsky noticed this would be the generating principle of

sentences with the famous example “Colorless green ideas sleep furiously”. It

follows that pairs of words have a meaning taken separately and provide

grammatical structure to the sentence, even if the whole is meaningless, as shown

in the following sequence:(de Kok & Brouwer, 2011)

[[“Colorless”, “green”],[“green”, “ideas”],[“ideas”, “sleep”],[“sleep”, “furiously”]]

To obtain such a list, we apply split () function to the original text variable with a

space character as the input argument, initializing the arg vector with the following

elements (unigrams):

let text = ‘Elena creste o mandra floare albastra albastra floare albastra floare’;

let arg = text.split(‘ ‘);

, then complete the following sequence of steps:(de Kok & Brouwer, 2011)

I. Place the window of two words at the beginning of the vector and generate the

first pair [“Elena creste”];

II. Then we slide the window’s position one at a time and save the next pair

[“creste o mandra”];

III. Repeat the second step until the end, thus extracting all available pairs in the

new vector (bigram):

let bigram = n => {return Array(n). fill (0).reduce((arr,_,i)=>{

arr.push((i>1)?arg[i-2].concat(“ ”, arg[i-1]):i);

return arr;

},[]);

};

4. Results

The combinatorial properties of words have always benefited from the interest of

linguists, so we need to make a statistic (histogram) that orders combinations of

words according to the frequency of their appearance in a text. First, we will extract

all pairs of words into a new vector (arr), please see Figures 3 and 4:

ISSN: 2821-4374 DIDACTICA DANUBIENSIS

 67

Figure 3. Janus Style Loop for Bigram Vector Generation

let arr = bigram(arg.length+1);

arr.splice(0,2);

Figure 4. The Result of Obtaining a New Linear Vector by Eliminating the First Two

Values of the Fibonacci Series

In the next step we’ll increment the total occurrences of each pair of tokens in the

previously resulting bigram vector and map each pair in the vector with its

frequency of occurrence, please see Figure 5:

Vol. 3, no 1/2023 DIDACTICA DANUBIENSIS

68

Figure 5. Janus Loop Style for Mapping the Vector Pairs with the Frequency of

Occurrence

let count = arr => {

 return arr.reduce((total, colloc) => {

 total[colloc] ? total[colloc]++ : total[colloc] = 1;

 return total;

 }, {});

};

const map = new Map(Object.entries(count(arr)));

Finally, we order the entries of the associative table (map) by values instead of

keys, please see Figure 6:

var mapDesc = new Map([...map.entries()].sort((x,y)=>y[1]-x[1]));

console.log(mapDesc);

Figure 6. The Result of Composing the Bigram () and Count () Functions

ISSN: 2821-4374 DIDACTICA DANUBIENSIS

 69

According to tf-idf numerical statistics, the application logic can be interpreted in

two different ways. In the first case, when the text is parsed in the conventional

direction (from left to right), a pair is assigned a value according to the frequency

of occurrence. In the second case, when the text is parsed in the opposite direction,

a value (frequency) associated with a specific pair within the associative dictionary

(map) is compared with the new frequency of occurrence of the inverted pair, see

diagram in Figure 7:

Figure 7. Plotting Inverse Document Functions, After Wikipedia, URL:

https://en.wikipedia.org/wiki/Tf-idf

The convergence of the string towards the necessary and sufficient condition of

fulfilling the anagram quality of a string in the vector is verified, applying the

Squeeze theorem within the series of absolute frequencies, please see Figure 8:

Vol. 3, no 1/2023 DIDACTICA DANUBIENSIS

70

Figure 8. Anagram Analogy with Plotted Mathematical Function, by KmPlot, URL:

https://edu.kde.org/

3. Conclusion

It follows from various studies, including our own, that use of pure FP languages

ensures the safe use of programs by guaranteeing there are no state changes in

software execution.(Khanfor & Yang, 2017) Since the programs’ invertibility is

generally undecidable (Kristensen & Kaarsgaard & Thomsen, 2022), all we can get

from our analysis of the text is a reasonable approximation, thus any analysis of the

text will divide the expressible pairs (collocations) into three categories: those that

turn out to be invertible, those that turn out not to be invertible, and those for which

analysis cannot be given a clear answer.

Our approach is to make this class of programs as accessible and useful as possible

to achieve the intended purpose. It is a fact that Javascript multi-paradigm language

has provided us with an invertible, more concise, more familiar, and easier

language to program in, allowing the writing of NLP algorithms in a style much

closer to that of conventional functional programming languages.

ISSN: 2821-4374 DIDACTICA DANUBIENSIS

 71

References

Avinash, (2020). 4 Best NLP Libraries for Node.js and JavaScript. Dialogflow.

https://www.kommunicate.io/blog/nlp-libraries-node-javascript/.

Brownlee, J. (2017). What Is Natural Language Processing?, Deep Learning for Natural Language

Processing. https://machinelearningmastery.com/natural-language-processing/.

de Kok, D. & Brouwer, H. (2011). Natural Language Processing for the Working Programmer.

https://www.researchgate.net/publication/259572969_Draft_Natural_Language_Processing_for_the_

Working_Programmer.

Khanfor, A. & Yang, Y. (2017). An Overview of Practical Impacts of Functional Programming, 24th

Asia-Pacific Software Engineering Conference Workshops.

https://www.researchgate.net/publication/323714122.

Krill, P. (2023). C++ still shining in language popularity index. InfoWorld.

https://www.infoworld.com/article/3687174/c-still-shining-in-language-popularity-index.html.

Kristensen, J. T. & Kaarsgaard, R. & Thomsen, M. K. (2022). Jeopardy: An Invertible Functional

Programming Language, 34th Symposium on Implementation and Application of Functional

Languages, DOI: 10.48550/arXiv.2209.02422.

Ljunglof, P. (2002). Functional programming and NLP.

https://publications.lib.chalmers.se/records/fulltext/local_10778.pdf.

Shaikh, M. (2023). Top 5 Programming Languages for AI and Natural Language Processing. Insider

News. https://www.insidermonkey.com/blog/top-5-programming-languages-for-ai-and-natural-

language-processing-1167657/.

https://www.insidermonkey.com/blog/top-5-programming-languages-for-ai-and-natural-language-processing-1167657/
https://www.insidermonkey.com/blog/top-5-programming-languages-for-ai-and-natural-language-processing-1167657/

