
Vol. 4, no 1/2024                                                           DIDACTICA DANUBIENSIS 

46 

 

 

 

Automating Scientific Paper Screening 

with Backus-Naur Form (BNF) Grammars 

 

Radu Bucea Manea Tonis1 

 

Abstract: This article explores BNF grammars to streamline the automated screening of scientific 

papers. BNF grammars define the valid structures and sentence formats for a specific language. They 

act like a rulebook, ensuring consistency and allowing for analysis of elements within the language. In 

this case, the BNF grammar serves as a blueprint for the proper formatting of scientific papers according 

to publisher guidelines. The grammar defines the acceptable structure and arrangement of elements like 

preamble, body, and paragraphs. By leveraging a tool like Java ANTLR v.4 runtime, we can convert 

the BNF grammar into a custom parser. This parser can then automatically assess submitted scientific 

papers, verifying if they adhere to the defined formatting rules established by the BNF grammar. This 

approach offers a way to automate the initial screening process for scientific papers, potentially saving 

time and improving consistency during the review process. 

Keywords: formal grammars; BNF; Template Meta-Programming (TMP) 

 

1. Introduction 

Context-Free Grammar (CFG) serves as a formal system for defining the syntax 

(structure) of languages. Its primary focus lies in the arrangement of symbols to form 

valid sentences, rather than the meaning, making it particularly useful for delineating 

programming languages, data formats, and certain aspects of natural languages. CFG 

                                                           
1 Senior professor, PhD, School of Behavioral and Applied Sciences - Informatics, Danubius 

International University of Galati, Romania, Address: 3 Galati Blvd., 800654 Galati, Romania, 

Corresponding author: radumanea@univ-danubius.com. 

 

Didactica Danubiensis, Vol. 4, No. 1/2024, pp.46-57 

  
Copyright: © 2024 by the authors.  

Open access publication under the terms and conditions of the 

Creative Commons Attribution-NonCommercial (CC BY NC) license  

(https://creativecommons.org/licenses/by-nc/4.0/) 



ISSN: 2821-4374                                                          DIDACTICA DANUBIENSIS 

 47 

can be represented as a 4-tuple, consisting of: 

G = (N, Σ, P, S), 

where: 

1. N (non-terminal symbols) - Denote abstract elements that can be substituted by 

other symbols based on production rules. 

2. Σ (terminal symbols) - The fundamental building blocks, such as letters, numbers, 

or punctuation marks. 

3. P (production rules) - Specify how non-terminal symbols are transformed into 

strings of terminals and non-terminals. Each rule consists of a left-hand side (one 

non-terminal) and a right-hand side (a string of symbols). 

4. S (start symbol) - A special non-terminal symbol that serves as the starting point 

for generating sentences. 

As per the findings by Iwashokun & Ade-Ibijola (2024), it is established that S 

belongs to N, and P constitutes a finite set of formulas in the form of A⟶α, where 

A belongs to N and α belongs to (N ∪ Σ)∗. The terminals are representative of the 

alphabet, while the non-terminals denote the names of rules. A rule is represented as 

P::= α, where P denotes the rule’s name, and α represents the production. The rule’s 

name is a non-terminal, while the production is a sequence of terminals and non-

terminals. In cases where a rule has multiple potential productions, they are 

segregated as illustrated by Vassor (2022). 

S::= a | aS. 

The concept of grammar involves a set of rules, with each rule, or production, 

defining a set of words. In simple terms, a production generates the words specified 

by the terminal, replacing non-terminals with productions from the corresponding 

rule. As an example, the rule S mentioned previously generates {a, aa, aaa, ...}. It’s 

important to note that rules are capable of being mutually recursive, as illustrated in 

Figure 1. 

  



Vol. 4, no 1/2024                                                           DIDACTICA DANUBIENSIS 

48 

 
Figure 1. BNF grammar of λ-calculus syntax, after radubm1/Lambda-calculus-parser 

(github.com) 

As per (Collins, 2019), a context-free grammar (CFG) outlines a set of potential 

derivations. A string, denoted as s ∈ Σ∗, belongs to the language specified by the 

CFG if there exists at least one derivation that produces s. It is important to note that 

each string in the language produced by the CFG might have multiple derivations, 

resulting in ambiguity. Some examples of current formalisms include minimalism, 

lexical functional grammar (LFG), head-driven phrase-structure grammar (HPSG), 

tree adjoining grammars (TAG), and categorial grammars. 

 

2. Backus-Naur Form (BNF) Grammars 

Backus-Naur Form (BNF) serves as a notation system for describing Context-Free 

Grammars (CFGs). It is not a grammar itself, but rather a method for articulating 

CFG rules. Both are fundamental tools in computer science and linguistics for 

expressing syntax. Labeled BNF, also known as LBNF, extends BNF by 

incorporating labels into grammar rules. In an LBNF grammar, each rule is assigned 

a label, typically in the form of an identifier. These labels serve as constructors for 

the abstract syntax tree (AST) that corresponds to the parsed structure1. LBNF offers 

a clearer relationship between the grammar and the AST. The labels explicitly 

delineate the subtrees that form the larger structure. This can be advantageous for 

tools that generate parsers or perform semantic analysis on the parsed code. 

Traditional BNF employs symbols like “< >” and “::=” to define production rules. 

LBNF retains these elements but introduces labels before the production definition2; 

refer to Figure 2 for further details. 

                                                           
1 https://bnfc.digitalgrammars.com/. 
2 https://bnfc.readthedocs.io/en/latest/lbnf.html. 

https://github.com/radubm1/Lambda-calculus-parser/blob/main/grammar.txt


ISSN: 2821-4374                                                          DIDACTICA DANUBIENSIS 

 49 

 
Figure 2. LBNF grammar of paper.cf file 

A more detailed interpretation was obtained by using the Railroad Diagram 

Generator (Rademacher, 2024), which is a tool for creating syntax diagrams, 

also known as railroad diagrams, from context-free grammars specified in 

EBNF. Please refer to Annex 1. In the LBNF example, “Progr.” serves as the 

label for the rule. This label becomes a constructor in the AST, representing 

an expression. The right-hand side defines the structure of a program. Please 

see Fig. 3 for details: 

 
Figure 3. Abstract Syntax Tree (AST) obtained by validating our grammar 

There are two primary approaches to extracting information from textual sources, as 

described by Iwashokun & Ade-Ibijola (2024): 

- The rule-based approach relies on predefined standards or templates to identify 

specific details in documents by analyzing text font styles. This technique has been 

applied in previous studies to process various document types, including invoices, 

legal documents, and CVs. 

- Recent developments in big data and text analytics have significantly improved 

information extraction. The machine-based approach involves using machine 



Vol. 4, no 1/2024                                                           DIDACTICA DANUBIENSIS 

50 

learning (ML), deep learning (DL), or large language models (LLM) instead of 

formal or rule-based methods. 

According to Paslaru (2024), Estonia is developing state-service chatbots called 

Bürokratt. Unlike other chatbots, Estonian chatbots utilize natural language 

processing (NLP) to deconstruct requests and identify keywords to understand user 

intent. 

 

3. Parsing Grammar Using Template Metaprogramming (TMP) 

In 1994, at a C++ committee meeting, Erwin Unruh from Siemens presented a 

program that became famous for its failure to compile. The program, which utilized 

the Synopsys ARC MetaWare, was created to compute the first prime numbers up 

to 30 at compile time, demonstrating the capability of template instantiation to carry 

out mathematical operations during compilation (Grimm, 2021). According to1, the 

use of TMP involves both defining and instantiating templates. The template 

definition outlines the generic form of the produced source code, while instantiation 

employs this form to generate specific source code. Many template implementations 

use recursion for flow control. TMP is Turing-complete, enabling us to tackle a wide 

array of computational problems. It does not involve mutable variables, statements, 

or loops, resembling functional programming languages such as Lisp or Haskell. 

There are no runtime costs associated with TMP, and through this sub-language, we 

can generate code, manipulate types, and perform computations on them or other 

templates (Andrivet, 2014). 

In the study conducted by Whitney & Ibanez (2021), it is mentioned that a meta-

function manipulates specific types or values to generate other types or values. It is 

worth noting that there is no requirement to instantiate the structure. When there are 

two template classes declared, the Class Template Argument Deduction (CTAD) 

Rules adhere to a specific ranking system, prioritizing more specialized templates. 

In our grammar, an abstract base class is created for each category, and a class is 

extended from the base class for each category constructor. Consequently, multiple 

files are placed into the subdirectory paper/Absyn. In addition, a Visitor interface 

and an abstract accept method are generated for each category in the grammar. 

Finally, an accept method overrides the abstract accept for each category constructor. 

                                                           
1 https://en.wikipedia.org/wiki/Template_metaprogramming. 



ISSN: 2821-4374                                                          DIDACTICA DANUBIENSIS 

 51 

The program utilizes the visitor skeleton by default, with Integer as the return type 

and Object as the “dummy” argument type, following the information from1. 

Stages in parsing the scientific papers by our proposed grammar: 

1. Creating the parser files using BNF Converter (bnfc 2.9.5): bnfc --java-antlr -m 

Paper.cf 

2. Building the PaperParser.java with make command, please see Annex 2. 

3. Running the parser on article.txt: 

Paper Title 

(c) by Name 

Abstract 

Keywords: ; ; 

┬╢ 

┬╢ 

The result is presented below, please see Fig. 4: 

 
Figure 4. Parsing article.txt with the scientific grammar parser (PaperParser.java) 

To efficiently represent arithmetic expressions, one can leverage nested templates to 

delegate expression analysis to the template processor. This strategy offers improved 

speed as the modified expression tree becomes available to the optimizer at the same 

level as the rest of the code, enabling comprehensive optimization within and across 

expressions and the surrounding code, as noted in a source2. Another viable approach 

involves developing a domain-specific language (DSL) for the expressions and 

                                                           
1 https://bnfc.digitalgrammars.com/tutorial/bnfc-tutorial.html. 
2 https://stackoverflow.com/questions/63494/does-anyone-use-template-metaprogramming-in-real-

life. 



Vol. 4, no 1/2024                                                           DIDACTICA DANUBIENSIS 

52 

integrating the translated code into the regular program. This alternative also delivers 

optimization advantages and enhanced readability, albeit requiring the maintenance 

of a parser. 

 

4. Conclusion 

In summary, LBNF offers the following benefits: 

- Clearer AST representation: Labels directly correspond to the structure of the AST. 

- Improved parser generation: Tools can utilize labels to construct the AST more 

efficiently. 

- Enhanced semantic analysis: Labels can assist in establishing the meaning 

associated with various parts of the parsed structure. 

 

References 

Andrivet, S. (2014). C++11 metaprogramming applied to software obfuscation. Black Hat Europe 2014 

- Amsterdam. URL: https://www.blackhat.com/docs/eu-14/materials/eu-14-Andrivet-C-plus-plus11-

Metaprogramming-Applied-To-software-Obfuscation-wp.pdf. 

Collins, M. (2019). Parsing and Context-Free Grammars. Columbia University. Retrieved from 

https://www.cs.columbia.edu/~mcollins/cs4705-spring2019/slides/parsing1.pdf, date: July 10, 2024. 

Grimm, R. (2021). Template Metaprogramming – How it All Started. Retrieved from 

https://www.modernescpp.com/index.php/template-metaprogramming-a-introduction. 

Iwashokun, O. & Ade-Ibijola, A. (2024). Parsing of Research Documents into XML Using Formal 

Grammars - Applied Computational Intelligence and Soft Computing. Wiley Online Library. 

Pissarro, B. (2024). O nouă realitate. Inteligența artificială schimbă profund omenirea / A new reality. 

Artificial intelligence is profoundly changing humanity. Retrieved from https://evz.ro/inteligenta-

artificiala-solutie-servicii-guvernamentale-bune.html. 

Rademacher, G. (2024). Railroad Diagram Generator - A tool for creating syntax diagrams. Retrieved 

from https://rr.red-dove.com/ui. 

Vassor, M. (2022). The formal-grammar package. Retrieved from https://tug.org/docs/latex/formal-

grammar/formal-grammar.pdf. 

Whitney, H. & Ibanez, F. (2021). Template Metaprogramming; CS 106L.  Retrieved from 

https://web.stanford.edu/class/cs106l/lectures/16_tmp.pdf, date: July 17, 2024. 

Source online 

www1; The Labelled BNF Grammar Formalism; https://bnfc.digitalgrammars.com/. 



ISSN: 2821-4374                                                          DIDACTICA DANUBIENSIS 

 53 

www2; LBNF reference; https://bnfc.readthedocs.io/en/latest/lbnf.html. 

www3; https://en.wikipedia.org/wiki/Template_metaprogramming. 

www4; https://bnfc.digitalgrammars.com/tutorial/bnfc-tutorial.html. 

www5; c++ - Does anyone use template metaprogramming in real life? 

https://stackoverflow.com/questions/63494/does-anyone-use-template-metaprogramming-in-real-life. 

  



Vol. 4, no 1/2024                                                           DIDACTICA DANUBIENSIS 

54 

Annex 1 

Document: 

 

Document::=Pre ‘Abstract \n Keywords:’ KeyBody 

no references 

Pre: 

 

Pre::= “Paper Title” “\n” “(c) by Name” 

referenced by: 

1. Document 

Key: 

 

Key::= ‘\t’ 

|Key’;’Key 

referenced by: 

1) Document 

2) Key 

Body: 

 

Body::=Par 

referenced by: 

1) Document 



ISSN: 2821-4374                                                          DIDACTICA DANUBIENSIS 

 55 

Par: 

 

Par::= ‘¶’ 

|Par’\n’Par 

referenced by: 

2. Body 

3. Par 

 

Annex 2 

package paper; 

import paper.*; 

import java.io.*; 

import org.antlr.v4.runtime.*; 

import org.antlr.v4.runtime.atn.*; 

import org.antlr.v4.runtime.dfa.*; 

import java.util.*; 

public class Test 

{ 

PaperLexer l; 

PaperParser p; 

public Test(String[] args) 

{ 

try 

{ 



Vol. 4, no 1/2024                                                           DIDACTICA DANUBIENSIS 

56 

Reader input; 

if (args.length == 0) input = new InputStreamReader(System.in); 

else input = new FileReader(args[0]); 

l = new PaperLexer(new ANTLRInputStream(input)); 

l.addErrorListener(new BNFCErrorListener()); 

} 

catch(IOException e) 

{ 

System.err.println("Error: File not found: " + args[0]); 

System.exit(1); 

} 

p = new PaperParser(new CommonTokenStream(l)); 

p.addErrorListener(new BNFCErrorListener()); 

} 

public paper.Absyn.Document parse() throws Exception 

{ 

/* The default parser is the first-defined entry point. */ 

/* Other options are: */ 

/* par */ 

PaperParser.Start_DocumentContext pc = p.start_Document(); 

paper.Absyn.Document ast = pc.result; 

System.out.println(); 

System.out.println("Parse Successful!"); 

System.out.println(); 

System.out.println("[Abstract Syntax]"); 

System.out.println(); 

System.out.println(PrettyPrinter.show(ast)); 



ISSN: 2821-4374                                                          DIDACTICA DANUBIENSIS 

 57 

System.out.println(); 

System.out.println("[Linearized Tree]"); 

System.out.println(); 

System.out.println(PrettyPrinter.print(ast)); 

return ast; 

} 

public static void main(String args[]) throws Exception 

{ 

Test t = new Test(args); 

try 

{ 

t.parse(); 

} 

catch(TestError e) 

{ 

System.err.println("At line " + e.line + ", column " + e.column + " :"); 

System.err.println(" " + e.getMessage()); 

System.exit(1); 

} 

} 

} 

  


